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INTRODUCTION

1. GENERAL SURVEY

In many contexts, in laboratory work, in industrial processes and in engineering practice,
situations arise in which it is required to determine the flow of heat in bodies under non-
steady conditions. In some cases this can be done by direct experiment, and a few cases are
sufficiently simple for formal analytical solutions of the appropriate equations to be obtained
and evaluated. But direct experiment is often difficult or impossible, especially under
practical conditions of manufacture or operation; and often the conditions of the problem,
such as inhomogeneity or the shape of the material, or variation of its thermal properties
with temperature, either make the formal solution so complicated that its numerical
evaluation is impracticable, or put a formal solution out of the question altogether.
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2 N. R. EYRES AND OTHERS ON

The primary purpose of the work which forms the subject of this paper was the develop-
ment of a practical method of evaluating solutions of the equations of heat conduction in
solids, under non-steady conditions, which should be free of the restriction to constancy of
thermal properties. But the method developed clearly has wider applications, for example,
to the formally analogous equation of diffusion when the diffusion coefficient depends on the
concentration of the diffusing substance. And, although the equations are considerably
different in form, it seems that in principle the method could be applied to the equations of
the laminar boundary layer in the motion of a viscous fluid. But so far the only applications
of the method which have actually been made are to the equation of heat conduction, and
the argument will be presented in terms appropriate to these applications.

Formally, the calculation of variable heat flow in solids is concerned with the evaluation
of solutions of the equation
2 D(0) v, (1-1)

' 4
where 8 is the temperature* and, for a material of thermal conductivity K, density p and
specific heat ¢, the diffusivity D is given by

D = Kjpo (1-2)

and may depend both on position (in heterogeneous materials) and on temperature. Since
one of the important features of the present treatment is that it is not restricted to materials
whose thermal properties are independent of temperature, this will be emphasized by
writing D explicitly as a furfction of temperature asin (1-1) ; the variation of D with position,
in heterogeneous materials, will be taken as understood.

The feature which characterizes the problem from the point of view of the present method
of evaluating solutions of this equation (1-1) is not so much the form of the equation itself as
the form of the boundary of the domain over which solutions of the equation are required,
the solutions having to satisfy given conditions on that boundary. These conditions are
normally given over a closed boundary in the relevant space co-ordinates, and over a single
boundary in the time co-ordinate; the domain of integration is open in the time direction,
in that the solution has not to satisfy any conditions, other than the space-boundary condi-
tions, at alater time. Itis this feature which makes the present method applicable. A formally
similar situation occurs in the case of the equations of the laminar boundary layer, in which
the field of integration is open in one co-ordinate though in this case a spatial one. On the
other hand, when the domain of integration has a closed boundary, as in the calculation of
steady states in the case of heat conduction, the method is inapplicable. This difference in
kind between the problems of calculating steady and variable heat flow or diffusion must be
clearly recognized in any consideration of possible applications of the present method.

Among the contexts in which information regarding heat conduction under non-steady
conditions is of great importance is the industry concerned with the manufacture of steel.
The thermal properties of steel vary considerably with temperature over the relevant range,
and no treatment of the heat flow in steel which does not endeavour to take account of this,
at least approximately, can be regarded as satisfactory for application to the practical

* When the conductivity depends on the temperature, ¢ in this equation should be replaced by a modified
temperature (@) as defined in § 8.
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THE CALCULATION OF VARIABLE HEAT FLOW IN SOLIDS 3

problems of the industry. An extensive series of accurate measurements of the thermal
properties of a number of typical steels over a wide range of temperatures has recently been
made at the National Physical Laboratory (Physics Department, N.P.L. 1939) at the request
of the Thermal Treatment Sub-Committee of the Alloy Steels Research Committee. This
showed clearly the need for a method of calculation of heat flow in substances whose thermal
properties vary with temperature, and the work with which this paper is concerned was
carried out under the auspices of the Thermal Treatment Sub-Committee of the Alloy Steels
Research Committee, with direct reference to the practical problems of calculating the
temperature distribution, and its variation with time, in steel ingots and plates in various
heat treatments.

In this context, as in many others, many problems of practical importance are concerned
with processes in which the temperature distribution is changing with time, and then the
determination of the temperature distribution is not easy. In the past, various methods of
attack have been tried, and these can for convenience be divided into four categories.

(i) Experimental determination. There are a few cases mentioned in the literature of attempts
to measure the temperaturedistributionin large masses of steel during heating. The technique,
however, is difficult, expensive, and the results apply only to the particular cases examined.
Such experimental data is very limited in extent, and its accuracy may be open to question.
The present work has emphasized the difficulties in such experimental work, and the caution
with which results must be regarded unless checked by at least a rough calculation.

(ii) Formal analytical solution. For constant diffusivity and suitable initial and terminal
conditions, analytical solutions can be obtained, though the resulting formulae may be
inconvenient for use in finding actual numerical values. But for a material in which the
diffusivity varies with temperature and, moreover, for which this variation is given by an
“empirical curve as it is in practice and not by an analytical formula, there is little prospect
" of obtaining a formal solution except as an approximation or as a special case (some examples

of approximate formal solutions will be given later in § 13).

Hence, though many attempts have been made to apply the formal solutions of equation
(1:1) to practical problems in industry, simplifying assumptions have usually had to be made,
which may be so drastic that the results are often of little immediate practical value, and
in certain circumstances may actually be misleading. These assumptions usually include
constant thermal properties of the material, and often specially simple surface conditions,
such as the surface temperature rising or falling instantaneously, or at a steady rate. Further,
the treatment of the case of two dissimilar materials in contact leads to very heavy formulae,
and numerical evaluation of the resulting expressions would be so laborious as to be almost
prohibitive.

(iii) Graphical treatment. Schmidt (1924,* 1937) has given an approximate graphical method
of evaluating solutions of the equation of heat conduction in one dimension, using finite
differences both in space and in time; this has been extended by Nessi & Nisolle (1928) to
radial heat flow in a circular cylinder. The approximation is based on a graphical discussion,

* Despite many enquiries, we have been unable to trace in this country a copy of the volume in which
Schmidt’s original paper was published. Our information regarding his method is derived from references
to it in other works, such as Trinks (1926), Appendix, p. 323.

1-2
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4 N. R. EYRES AND OTHERS ON

and no thorough investigation is made of the errors involved by the use of finite difterences.
For the integration with respect to time, the crude integration formula

fo+d
|7 s di= )
is used. For a material of constant diffusivity, the work is much simplified by taking time
intervals related to the space intervals in a way depending on the diffusivity. The technique
of calculation is difficult and laborious to apply unless constant thermal properties are
assumed; further, in the case of steel and other materials of high diffusivity it becomes
exceedingly tedious and difficult to apply with any accuracy.

An equivalent numerical process for constant diffusivity, probably less laborious to apply
than Schmidt’sgraphical process and moreaccurateinitsresults, has been given by McAdams
(1942).

(iv) Methods involving the use of models. Such methods attempt to simulate the heat flow
by electrical or hydraulic analogies (see, for example, Paschkis & Baker (1941, 1942) and
Moore (1936)). At first sight, it might appear that use of such models would provide an easy
solution to this difficult problem, but actually it is found that the practical difficulties of con-
struction and calibration are considerable. Further, without considerable elaboration, they
cannot be applied to heat conduction in a material whose diffusivity varies continuously
with the temperature.*

The work here described was concerned with the development and application of a
method of calculating variable heat flow which would be free from the restrictions to constant
diffusivity, or to particular time variations of surface temperature or surface heat transfer,
or to a particular form of relation between these quantities, and also would be quicker and
casier to carry out than Schmidt’s graphical method. Such a development, it was con-
sidered, would represent a considerable advance owing to the much wider scope of a method
free from these restrictions. Further, the closer approximation to practical conditions which
its use would permit would enable results of acceptable accuracy to be obtained over a much
wider range of problems of practical significance.

The method developed depends on the use of an approximation by which the partial
differential equation (1-1) is replaced by a set of simultaneous ordinary differential equa-
tions, which are of a form very suitable for mechanical solution by the differential analyser
(Bush 1931; see also Hartree 1938). This approximation is formally the same as one of those
made in Schmidt’s method (see (iii) above), but the present {reatment of the resulting set
of ordinary differential equations is quite different from that of Schmidt, and avoids the main
restrictions on the practical application of Schmidt’s method. Further, in the present treat-
ment no further approximation need be made, except in the treatment of a transformation
occurring at a fixed temperature with emission or absorption of latent heat, though the work
can be simplified by the use of further approximations if the accuracy obtained by use of

* In one hydraulic instrument (Moore 1936), provision is made for treating variable diffusivity by an
approximation which involves regarding the diffusivity as constant and uniform over successive periods of
time between which it changes discontinuously. This is a better approximation than taking the diffusivity as
a constant, but it seems very artificial, and a more realistic treatment seems desirable.


http://rsta.royalsocietypublishing.org/

JA '\

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THE CALCULATION. OF VARIABLE HEAT FLOW IN SOLIDS 5

them can be shown to be adequate; whereas Schmidt’s method essentially involves the use
of a further approximation and, moreover, a crude one as already mentioned. In the
present work there is no difficulty in taking into account continuously the variation of the
thermal properties with temperature, including the heat of transformation at a change
point, and, in the case of an ingot cooling in a mould, the radiative transfer of heat through
the gap between the outer surface of the ingot and the inner surface of the mould. Also it is
possible to extend the method to one-dimensional heat conduction in a slab consisting of
layers of different materials in contact over a plane normal to the flow of heat, and to the
corresponding axially symmetrical cylindrical case.

Also, as the work proceeded, it was found practicable (still without restriction to constant
diffusivity) to treat heat conduction in a square prism and two-dimensional heat conduction
in a circular cylinder without the restriction to axial symmetry, as well as one-dimensional
heat flow in a slab and radial heat flow in a cylinder. Further, the use of the differential
analyser provides a much quicker, less laborious and more accurate technique for
evaluating solutions than Schmidt’s graphical method, so that the much greater range of
problems which can now be handled is accompanied by a quicker and easier process of
handling them.

2. SCOPE OF THE PRESENT PAPER

The contents of this paper can conveniently be divided into four parts. The first is con-
cerned with the basic approximation by which the partial differential equation is reduced
to a set of ordinary differential equations, and with the results of using this approximation
in the various forms of the equation of heat conduction appropriate to bodies of different
shapes and with different degrees of symmetry in the heat flow. The second part is concerned
with some results of calculations of variable heat flow in materials for which the thermal
properties are independent of temperature. The third deals with the general case of heat

- conduction in a material whose thermal properties vary with temperature. The fourth deals
with the treatment of an ingot cooling in a mould, when heat flow is by conduction through
the material of the ingot and the mould, and by radiation across the gap between them.

Although, as already emphasized, the main purpose of the work was the development of a
method of calculating variable heat flow free from the restriction to constant diffusivity,
there are several reasons why the work considered in the second part was undertaken and
why the results are important to the work as a whole. First, when the thermal properties are
constant, it is possible to find cases of variable heat flow in which both the partial differential
equation (1:1) and the set of ordinary differential equations by which it is replaced have
formal solutions. These can then be taken as test cases to examine both the magnitude of the
errors introduced by the use of the analytical approximation on which the method is based
and also the accuracy of the differential analyser in the solution of the set of equations arising
from the use of this approximation. Further, from the point of view of the technique of the
use of the differential analyser in work of this kind, which was rather different in character
from anything previously undertaken, it seemed best to start on the simpler case of constant
diffusivity for exploratory work and then, if this proved satisfactory, to introduce the
variation of diffusivity with temperature.
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6 N. R. EYRES AND OTHERS ON

Before a solution of the equation of heat conduction can be evaluated, the conditions at
the surface of the material must be specified. These may be of three kinds. Either the surface
temperature or the surface heat transfer may be given as functions of the time, or the relation
between the surface heat transfer and the surface temperature may be given (and may or
may not depend on the time). The simplest surface condition to deal with by the present
method is a given variation of surface temperature with time. But the treatment of the heat
flow within the material is independent of the surface condition, and the method can be
extended to cover the other kinds of surface conditions mentioned.

However, in the application of the method to the evaluation of the temperature distribu-
tion inside steel masses in furnaces, the quantitative laws governing the flow of heat from the
furnace into the steel are not known with sufficient precision, nor are the conditions in a
furnace sufficiently well defined to be used as the basis for quantitative calculations of the
internal temperature distribution. On the other hand, under experimental conditions, and
sometimes, at least at high temperatures, under practical works conditions, the surface
temperature can be determined. Consequently attention was first concentrated on the case,
which happens also to be the simplest to handle, in which the surface temperature is given as
a function of the time. ‘

The treatment is here simplified by restricting it to solids of certain simple shapes, the
slab, cylinder and square prism. This is not a limitation of the method, but the many
practical cases can be covered with sufficient accuracy by the results for these cases. Further,
in order that the methods should be of any value in application to less simple geometrical
shapes, it would be necessary to know the temperature distribution all over the surface and
this information is usually not available.

On the general question of the accuracy required in this work, it should be realized that
the thermal properties of steel are not reproducible to an accuracy which would justify any
great refinements in methods of solving the heat-flow equations for practical purposes. Even
if values in the transformation range (say 700-750° C) are omitted, the specific heats of
different specimens of nominally the same steel, at the same temperature, differ by 2-5 9%
(cf. steels 5 and 5%, Second Report of the Alloy Steels Research Committee (1939), Table 47; above
900° the difference is 8-15 9,). So approximate methods of evaluating solutions of the heat-
flow equations which are correct to 1 or 29, as compared with accurate solutions of those
equations are to be regarded as adequate for practical purposes.

PART 1. THE REDUCTION OF THE PARTIAL DIFFERENTIAL EQUATION OF HEAT
CONDUCTION TO A SET OF ORDINARY DIFFERENTIAL EQUATIONS

3. HEAT CONDUCTION IN THE INTERIOR OF THE CONDUCTING MATERIAL

As already mentioned, the treatment of heat conduction within the conducting material
is independent of the surface conditions, and this treatment is the main subject of this section.
In so far as reference is made to surface conditions, it will be supposed that these are in the
form of given time variations of surface temperatures. The treatment of other surface condi-
tions is considered in § 4.

The heat-conduction equation is a partial differential equation, and the evaluation of
solutions of partial differential equations as such, either mechanically or numerically, is
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THE CALCULATION OF VARIABLE HEAT FLOW IN SOLIDS 1

hardly practicable except in the few cases for which there is available an analytical solution
which can be evaluated numerically. Otherwise, it is necessary to replace the partial
differential equation by an approximate ordinary differential equation or set of such
equations before it can be handled either mechanically or numerically. When such an
approximate solution has been evaluated, it is often possible to estimate the error introduced
and, if necessary, to apply an approximate correction for it. An example will be found later
in the present work (see § 14 (ii)). , -

In the case of the equation of heat conduction in one dimension, there are two alternative
methods of making such an approximation. One method is to replace the #me rate of change
of temperature by the temperature change in a finite time interval; the accuracy of such a
method has been examined (Hartree & Womersley 1937) and it has been applied success-
fully to the transient temperature behaviour in a dielectric in an alternating field, when the
rate of generation of heat increases exponentially with the temperature (Copple, Hartree,
Porter & Tyson 1939). Unless the equation is linear (and, in practice, often even when it is
linear), boundary conditions have to be fitted by running a number of trial solutions from
one end of the space range until one is found which satisfies the condition at the other end
(see Copple et al. 1939, Appendix II); this makes the method rather lengthy.

Alternatively, the space derivative may be replaced by a corresponding finite difference;
the treatment of boundary conditions is simpler in this method and it is practicable with
simpler equations. The latter method was used in the work with which this report is
concerned.

The method will be presented here as applied to equation (1-1); its extension to heat
conduction in a material whose conductivity varies with the temperature will be considered
in §9. )

(a) One-dimensional heat flw. The simplest case is that of one-dimensional heat flow.
Consider an infinite plane slab, of thickness 2/, heated uniformly over each face. Take the
x-axis normal to the plane of the slab, with origin at the mid-plane, and consider the slab
divided into 2n layers, each of thickness dx = //n, by parallel planes x = x; = jdx with j
integral and —n<j<n (the values j = +4-n give the surfaces of the slab). Let 6, be the
temperature on the plane x;.

Then it is easily shown from the Taylor expansions of ;. in terms of § and its derivatives
at x;, that

0,1 —20;+0;_; = (6x)% (0%0/0x2); 4-%5(0x)* (9*0/9x*);+ O (0x)° (3-1)

Hence an approximation to (9%0/0x?); neglecting second-order terms in (dx)? is
POV = (0,,1—20,+0,_))(0x)? 3-2
(W)j: (0;.1—20,+06;_,)/(0x)*. (3-2)

A corresponding approximation to the temperature gradient (d6/dx); will be required later
to the same order of approximation; this is given by

The essential approximation of the present work lies in using these approximations to the
space derivatives in the heat-flow equation (1-1).
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8 ' N. R. EYRES AND OTHERS ON

It can be seen from (8-1) that this is equivalent to replacing the actual temperature
distribution between x;_; and «;,, by a cubic. It can also be seen from (3:1) that the errors
introduced by this approximation can be decreased indefinitely by decreasing (dx), that is,
by increasing the number of intervals into which the thickness of the slab is divided. Use of a
large number 7 of intervals has, however, practical disadvantages, and the time required to
obtain a solution on the differential analyser (or, probably, by any alternative means)
increases at least as rapidly as #2. Hence it is important to determine the smallest value of
n required to give adequate accuracy for practical purposes. This was one of the main
objects of the work considered in Part II.

If the diffusivity varies with the temperature, let D(f) be the diffusivity at temperature 6.
Then for the time rate of change of temperature at x = x;, (1-1) becomes

9, 00
3 =20 (50);

J

and use of the approximation (3-2) gives

20, 0,01—20,+0,_
ﬁ‘:D(aj) — (3,52 =L (3-4)

There are 2z—1 such equations for the time variations of the temperatures 6; from
Jj=—(n—1)toj =+ (n—1);0,and 0_, are the surface temperatures and are to be regarded
for the present as given, as already explained.

If the heating is the same on the two faces of the slab, the internal temperature distribution
will be symmetrical, so that §; = ¢_; and in particular , = 0_,, so the equation (3-4) for j = 0,
that is, for the temperature on the central plane, becomes

9, _
o

2(6,—0,)

D(6,) o

(3-5)
It is then only necessary to work with equations (3-4) for one-half of the slab thickness (those
for positive values of j for convenience), and (3-5) for the central temperature. To the
approximation used here, then, the partial differential equation (1-1) is replaced by the set
of simultaneous ordinary differential equations (3-4) and (3-5).

(b) Radial heat flow in circular cylinder. The equation of radial heat flow in a circular
cylinder is
a0 9%0 100
37:1)(‘9) (W+;5;7)° (36)

Let the radius a be divided into 7 equal intervals dr = a/n, and let r; = jor be the outer
boundary of the jth interval and §; the temperature there. Then use of the approximation
(3-2 and 3-3) (with r as independent variable) in (3-6) gives

20,
S =D0)

(2°+1) 000 — 40+ (2~ 1) 0,

5 (0r)? (37)


http://rsta.royalsocietypublishing.org/

j A Y

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

' \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THE CALCULATION OF VARIABLE HEAT FLOW IN SOLIDS 9

This only holds for j>1; it is indeterminate for j = 0; but by symmetry, 6/dr = 0 atr = 0,
soif § =0, atr = 0r, 0 = 0, (6,—0,) r2/(dr)? approximately, for (dr) sufficiently small and
r<dr. Hence

(37 3) ., = 400107
and so (3-6) gives 3_8‘9_; D(6,) 4(0(3 ¥ 2 59)

An alternative derivation of this equation will be given later (see subsection (d) below).
Equation (3-7) forj = 1 to (n—1), and equation (3-8) for j = 0, are those which have to be
solved to give the time variation of temperature distribution in the cylindrical case. A similar
argument applies to radial heat conduction in a sphere, but this case is not of practical
interest.

The coefficient 4 in (3-8), compared with the coefficient 2 in (3-5) should be noted. It
arises from the greater concentration of the heat flow towards the axis of the cylinder, as
compared with the concentration towards the central plane in the slab; it might be expected
and can be verified, that the still greater concentration towards the centre of a sphere makes
~ this coefficient 6.

An alternative method, for a Aollow cylinder of internal radius b, is to use

— log (r/8) (39)
as independent variable. Then (3-6) becomes
0 _ .
= D(H) 0/12’ (3-10)

so the heat flow can be treated as one-dimensional heat flow in an inhomogeneous solid with
diffusivity proportional to ¢~2* (and perhaps varying with temperature also). Equations
(3-4) and (3-5) then apply, with this non-uniform diffusivity. '

This treatment is clearly inapplicable to a solid cylinder, but it might be convenient for a
hollow cylinder for which a/b is not a ratio of fairly small integers.

(¢) Two-dimensional heat flow in a prism of square section. For a prism of square section, it is
most convenient to use the equation of heat flow in two dimensions in its Cartesian form

0 (aza aza)

F ax2+ay (3-11)

rather than in its polar form of which (3-6) is the special case for axial symmetry. Let 2a be
the side of the square section. The centre of a section will be taken as origin and the sides of
the square will be regarded as divided into segments of length dx = dy = ds = a/n. The
temperature at the point x = jds, y = kds will be written 6, ;.

The x and y derivatives in (3-11) can both be replaced by corresponding finite differences
(3-2), and (3-11) then becomes

00;
Bt

Hj,k—H+0j~1,k+0j,k—l—"4ﬂj,k

o (3-12)

__‘D(a )0j+l,k+

VoL. 240. A. 2
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10 N. R. EYRES AND OTHERS ON

The surface temperature need not be uniform, but, if not uniform, its time variation will be
taken as given at each surface point x = jds, y = +a and x = 4-a, y = kds.

If there is no symmetry in the temperature distribution, the number of independent
equations to be solved is (22— 1)2, but if there is some degree of symmetry in the heating, the
number is reduced considerably. In the simplest case of full symmetry (which includes the
case of uniform heating) the number is reduced to 4n(n-1); it is then only necessary to
consider the heat flow and temperature distribution in and on the boundary of an octant
of the square, and there are symmetryrelations 0, _, = 6; ;and 0, , = 0, ; for simplifying the
equations for points on the lines of symmetry. F or example,

P00 D(t, o) 2010

for j=k=0, 9t (83)2 5
a0, 7 0; 20, \—40,
for j#0,k=0, ~3°=D(0;,) et i, (255 =), (3:13)

2(0;41,;+0;24,;—20; ;)
(ds)? ' )

a0,
for j=k+#0, (?]tj D(; ;)

For n = 2, equations (3:13) cover all possibilities.

(d) Two-dimensional non-radial heat flow in a circular cylinder. A similar treatment can be
applied to heat flow in a circular cylinder without the restriction to axial symmetry.
The equation of heat conduction in plane polar co-ordinates (7, ¢) is now

a0 J%0 140 1020)

2= PO 5ty 5 2age) (3:14)

For the r-derivatives the same approximation can be used as in the treatment of the axially
symmetrical case (b) above. Further, if therange 27 of the azimuth ¢ is also divided into equal
intervals dg, the approximation (3-2) can be applied to the g-derivative in (3-14). If 6, ,
now stands for the temperature at the point 7 = jdr, and ¢ = £0¢, the finite difference form of
(3-14) for j0 is then

0ﬁj,k~D(Hj,k)l:(2j+l)ﬂj+l,k 40; 1+ (21— )0j—1,k lﬂj,k+1—23j,k+‘9j,k~1:l (3-15)
g (o) 2 J? (99)? '

This-is not applicable to the temperature at the centre j = 0. But for §¢ = i, the con-
figuration of the points of the polar co-ordinate lattice on 7 = Jr (that is, j = 1) and at the
centre is exactly the same as for a Cartesian lattice, so equation (3-12) can be taken over
directly as the appropriate equation in the cylindrical case with d¢ = 1m. With the suffixes
appropriate to the polar co-ordinate lattice, it becomes

26, Oy o0y 140y 50y 5 — 40,
e D(ao)[ e | (3-16)

More generally, let 7, be the mean temperature on the circle = 0r(j = 1). The difference
between this mean temperature and the temperature 6, at the centre is

0,00 = £(0r)* (V20)+ O (dr)%, (3:17)
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THE CALCULATION OF VARIABLE HEAT FLOW IN SOLIDS 11

and whatever the value of 04, the best available value of ¢, is the arithmetic mean of the
values of f on the circle r = §r. Use of (3-17) for (V20), in the heat conduction equation(1-1)
then gives , :
’ 90, 4D(6,)

= (o)

for ¢ = % this gives (3-16). For axial symmetry, the temperature is uniform over the circle
7 = dr, and then #, = 0, and (3-18) reduces to (3-8), providing an alternative deduction of
the latter formula.

%

(91—0o)§ (3-18)

The practical value of this method of evaluating solutions of the equation of heat con-
duction depends on the number of intervals into which the space range has to be divided in
order to attain results of acceptable accuracy, bearing in mind the limited accuracy of the
data on the thermal properties (see end of § 2) ; the smaller this number is, the more quickly
and easily can solutions be evaluated.

This number depends on the accuracy required and on the numerical magnitude of the
errors resulting from the use of approximations (3-2) and (3-3). This can be tested in two
ways: firstly, by taking cases in which both the partial differential equation and the set of
ordinary differential equations by which it is replaced have analytical solutions, from which
numerical results for particular examples can be evaluated and compared; and secondly,
by evaluating two solutions, with the same surface conditions, with the space range divided
into two different numbers of intervals; from comparison of such solutions the errors in each
can be estimated. Both methods have been used in the present work; results are discussed
in §§ 7 and 14 respectively.

It should be noted that these errors, due to the use of the analytical approx1mat10ns (3-2)
and (3-3), can not be determined satisfactorily by comparison of calculated and experi-
mentally observed transient temperature distribution. As will be seen later (§ 14), the errors
due to the analytical approximations alone are often smaller than the possible discrepancies
due to uncertainty in the exact conditions prevailing in the experiments (e.g. departures
from radial heating, in the case of a cylinder, or departures from nominal values of thermal
properties), and to experimental errors in the difficult technique required for the measure-
ment of time-varying temperatures in the interior of masses of material at high temperatures.

4. TREATMENT OF BOUNDARY CONDITIONS OTHER THAN GIVEN
TIME VARIATIONS OF SURFACE TEMPERATURE

When the boundary conditions at the surfaces of the solid through which heat conduction
is being considered have the form of given time variations of surface temperatures, then
these data go directly into the appropriate equations of the set (3-4) (for the slab and
similarly for other geometrical shapes). But an extension of the equations is required to deal
with boundary conditions involving the surface heat transfer explicitly. A similar extension
is required in treating the heat flow across the surface of separation of two dissimilar
materials.

The surface heat flux (i.e. surface heat transfer per unit area and per unit time) will be
written F and will be taken positive in the direction of x or r increasing. Its distribution over

the surface may be given as a function of time only, but will more often be related to the
2-2
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12 N. R. EYRES AND OTHERS ON

surface temperature in a definite way, which may or may not depend on the time. For
example, for Newton’s law of cooling, it is proportional to (,—8,), where ¢, is the ambient
temperature, and for radiative heat transfer between a source at temperature ¢, (which

. may depend on the time) and the surface, the surface heat flux is proportional to (6,*—6,*).
When necessary to emphasize the variables in terms of which the surface heat flux is given,
they will be written explicitly as arguments of F, in general as F(0,,¢). The temperature
distribution in the solid is related to the heat flux by

K(0) (3) ——F(61 (41)
for the slab, and K(4) (gif) —_F(, 1 (4-2)

for the cylinder. The only new question is how to deal with the surface temperature gradient
in terms of the approximation used in § 3. The argument will be presented for the plane
case; its extension to the cylindrical case is obvious, and the results for this case will be
quoted, without details of their derivation.

One method of dealing with the surface temperature gradient is, in effect, to extrapolate
its value from the temperatures 4, =0, ¢,_, and 6,_, at the surface and at one and two
intervals inwards from it. If 930/dx® is assumed to be negligible, then

20 1 /0%
ot =0~ (5g) 0)45(5) @02
20 520 (+:3)
0, 0,—2 (ﬂ) (%) H(a‘x‘?)s (8x)2,
. . 0\ 0, ,—40, 430,
so, to this approximation, (3—’;)3 = -n=2 5 3x)l . (4-4)

It would be possible to include further terms in the Taylor series (4-3), but this would in
effect only increase the range from which the extrapolation of the surface temperature
gradient is carried out, and it is doubtful if the result would be much better. On the other
hand, it certainly seems worth while using a better approximation than the crude expression
(0,—8,_,)/(0x), by taking the Taylor series as far as the terms involving (9%0/dx2), and
eliminating this term, since all non-steady heat flow depends on this derivative being
appreciably different from zero.

Combination of (4:1) and (4-4) gives an algebraic equation for the surface temperature
in terms of the temperatures ¢, , and 0, ,, which are given by integration of (3-4) for
J=mn—1 and j = n—2 respectively. This equation is

20e[F(0,, 1)/K(0,)] 30, = 40, ,—0, ,, (4:5)

and applies to both plane and cylinder.
The other method of dealing with the surface temperature gradient is to imagine the heat
transfer by conduction carried one interval beyond the real surface x = x, to x,,; = x, 0%,

so that
aﬁs . ﬁn+l_2ﬁs+ﬁn—l .
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THE CALCULATION OF VARIABLE HEAT FLOW IN SOLIDS 13

(note, 0, = 0,). From (3-3) the temperature gradient at the position of the real surface
would be, to the same order of approximation,

a6 0p1—0,_
(3s), = e (+7)
Then imagine the temperature @,,, to be controlled so that the relation between (90/dx),,
given by (4+7), and 0, is that specified by (4-1). Such control might not correspond to any-
thing that could be realized in practice, but the heat flow inside the real surface, for ade-
quately specified conditions at that surface, cannot depend on the means outside that surface
by which these conditions are attained. Elimination of 4, , between (4:6) and (4+7) gives a
differential equation for the surface temperature, namely

a‘9.9 . 2 F(ﬂs.t) 0.9_611-—1
A PRl O I (AN ™ }

instead of the algebraic equation (4-5).

The approximation (4:7) is better than (4-4) and has the advantage of being in effect an
interpolated rather than an extrapolated value of the surface temperature gradient, and use
of (4-8) should give more accurate results than use of (4-5). The two terms in (4-8) can be
interpreted, roughly, as the contribution to the heating of the surface by the flow of heat
into it from outside and the (negative) contribution due to the flow of heat away from it by
conduction to the inside.

In particular, if there is no surface heat transfer, the surface temperature is given by

06

(4-8)

| (3 )2D('9 (01 —0)- - (49)
Equation (4-8) applies if the material to which D refers lies to the left (x <x,) of the surface.
Similarly, for a material lying to the right (x>x,) of the surface,

a0, 2 F,t) 0,—0
’%:“ﬁD@)"éw)+ 5

A particular application of (4-8) and (4-10) is to the conditions at the surface of separation
x = x, of two different conducting materials in contact. Let suffixes @ and & refer to the
materials to the left and right of x;; dx may be taken as different in the two materials. The
boundary conditions are that the surface temperature and surface heat flux are continuous
across the boundary, that is

b= Oy Eyl0,1) = Fy(0,,0). (411)
For the materlal to the left of the surface, (4-8) applies with D = D,, dx = (dx),; for that to

the right, (4-10) applies with D = D,, dx = (dx),. Elimination of the surface temperature
- gradient from these two equations by use of the boundary conditions (4-11) gives

L2y (4-10)

17K,(8%),  K,(3%),799, _[( K, ,
L0 - el om0 -laglo-an] e
For the cylinder, the corresponding equation to (4-8) is
b, 2 F(ﬁ t) 0,—40,_, )
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14 N. R. EYRES AND OTHERS ON

for the outer surface of a solid or hollow cylinder (radius ndr), and

voproli-d-te]

for the inner surface of a hollow cylinder (internal radius m dr). If there is not heat transfer
at the outer or inner surface, the equation corresponding to (4-9) is

a0, 2 2
% = oL 0) Cors—=0) 0r (55 D(0) Cres=0). (415)
respectively. - :

A better approximation still than (4-7) is

(8_02) — 20n+1 + 30s'— 6071—1 +0n—-2
ox, 60x ’

and combination of this with (4-1) and (4-6) gives

(4-16)

29, 3 F(0,,) , 70,—86, 10, ,
o~ P [ K@) 68x }

Corresponding equations can be obtained for the cylindrical case.

PART II. THERMAL PROPERTIES INDEPENDENT OF TEMPERATURE

5. REDUCTION TO DIMENSIONLESS MEASURES OF LENG‘TH AND TIME

As already explained, some preliminary work for the case of constant diffusivity was done
for three main purposes: firstly, to gain experience in the use of the differential analyser in
work of this kind; secondly, to examine the numerical magnitude of the errors introduced
by the replacement of the space derivative by the corresponding finite difference and hence
to determine the smallest number of intervals into which the space range could be divided
so as to give results of acceptable accuracy; and thirdly, to test the accuracy of the differential
analyser when applied to the resulting equations.

When the diffusivity is constant, it is convenient to work in terms of non-dimensional
measures of length and time. If 2/ is the thickness of the slab, a the radius of the cylinder,
2a the side of the square,

X=x/l, R=rla, and X =2x/a, Y =yl/a, (5-1)
in the three cases respectively, are convenient dimensionless measures of length, and
7=Dt/I> or Ditla? (5-2)

respectively, are convenient dimensionless measures of time. Use of these dimensionless
measures of length and time has a further advantage that the results apply equally to slabs
of any thickness and cylinders of any radius. In terms of X, 7 the partial differential equation

(1-1) reduces to
a0 0%0

ir X (5-3)
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THE CALCULATION OF VARIABLE HEAT FLOW IN SOLIDS 15

and the approximate equation (3-4) becomes

a0,
31 n?(0;,,—20,+0;_,), (5-4)
where n = [/0x is the number of intervals dx in the half thickness / of the slab. If
T = n?7 = n’Dt|I?> = Dt/(dx)?, (5-5)
. 20,
(5-4) can be written (?T =0;,,—20;,+0;_,, (5-6)

which is convenient for analytical work and for work on the differential analyser. But since
the measure T of time depends on 7, which is a property of the approximation used for the
solution of the heat-flow equations and not of the physical process of heat conduction, it
has not the same physical significance as 7.
Similarly, for radial heat flow in a cylinder let
T = n?1 = n*Dtla® = Dt/(dr)?; (57)
then (3-7) and (3-8) become

90; (+1) (05.1—0;) =& —1) (0;,—0;-,)
a7

— 4(0,—0,). (5-9)

<.

1

(7>0), (58)

D
’ﬁ’% S

|

6. APPLICATION OF THE DIFFERENTIAL ANALYSER

The application of the differential analyser to equations (5-6) for the plane case, or (5-8)
and (5'9) for the cylindrical case, is straightforward.

For symmetrical heat flow in a slab, or for a cylinder, # integrators are required, and
one input table for supplying to the machine the time variation of the surface temperature.

For the plane case, it is most convenient to take (5-6) in the form

s (0,01—0)—(0,~0,..). (61)

Each difference of two adjacent temperatures, such as 0,,, —0;, occurs in two equations;
for example, 0;,,—0; occurs in the equations for §; and for 4, , ;. It is convenient to form these
differences and to combine them so as to form the right—hand sides of equations (6-1), as two
steps. The output from the integrator which evaluates §; by integration of 3;/0 T"is combined,
by two adding units, with the outputs from the integrators on either side, giving 0;,, —0;
and ¢;—0;_,. Then §,,,—0; is combined with §;,,—0,,, to give d0;,,/0 T, and with 0;—0;_
to give 00,/0T.

For the point one layer in from the surface, that is, for x = x,_,,

ad,_
arél“l = wn”—ﬁn—l) - (‘971—1'—-'9"—2)’

and 0, is the surface temperature 0, which is fed in from an input table on which a curve of
0, against T, previously drawn, is placed.
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16 N. R. EYRES AND OTHERS ON

For the cylindrical case, the only difference is that, as indicated by the equations in the
form (5-8), the differences (6;,,—0;) and (0,—0;_;) between the outputs from successive
integrators have to be multiplied by numerical factors before being combined to form
00;/0T. These factors are independent of 7 and in practical cases, when 7 is fairly small,
they are ratios of small integers and can easily be introduced by gears.

The time required for a machine solution depends on the range of 7" to be covered.
Formula (5-5) shows that, for a given period of time £, the range of 7" is proportional to 72,

so that the running time for a solution is proportional to 7?2 as already mentioned.

7. RESULTS AND DISCUSSION

Examination of the errors introduced by the use of the analytical approximations (3-2)
and (3:3) to reduce the partial differential equation of heat flow to a set of ordinary dif-
ferential equations, and of the accuracy of the differential analyser for the solution of this
set of equations, can best be done for the case of constant diffusivity. In this case both the
partial differential equation and the set of ordinary differential equations have analytical
solutions which, for suitably chosen time variations of surface temperature, are not too
inconvenient for numerical evaluation. If then these analytical solutions are evaluated, and
a solution of the set of ordinary differential equations is also obtained on the differential
analyser, all for the same time variation of surface temperature, comparison of the three
sets of results will enable a clear distinction to be made between the errors introduced by the
use of the analytical approximation (3-2) and errors in the solution of the resulting equations
by the differential analyser. ’

The analytical solutions, both of the partial differential equation and the set of ordinary
differential equations, is simpler for the plane case than for the cylinder or square prism, so
it is much easier to make the tests for the plane case. If use of the equations (3-4) and (3-5)
for the plane case is satisfactory, it seems safe to assume that the corresponding use of (3-7)
and (3-8) for the cylindrical case, and (3-12) and (3-13) for the square prism, will also be
satisfactory.

For this reason these tests are restricted to the plane case. For such a test it is necessary
to choose a variation of surface temperatures §, with time, so that analytical solutions, both
of the exact equation (5-3) and of the approximate equations (5-6), could be obtained, and,
moreover, in forms suitable for numerical evaluation. Three cases were taken, namely,

Casel. 6,=0 for T<0, 0;,=1 for T>0.
Casell. 0,=T for T>0.
Case III. 0, = }[50—¢ T/5(T2+4+107T+50)] for T>0.

Case I is an extreme case in which the surface temperature is suddenly increased; this is
more drastic than any case likely to occur in practice, since even when a cold mass of steel
is suddenly placed in a furnace, the surface temperature does not change discontinuously.
Case I1 is that in which the surface temperature rises at constant rate. Case IIT was chosen
to be representative of the general shape of heating curves of ingots in furnaces. In all cases
the temperature was taken as initially uniform throughout the slab, and temperatures were
reckoned from this initial temperature as zero.
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THE CALCULATION OF VARIABLE HEAT FLOW IN SOLIDS 17

It is obvious from the equations that as long as the diffusivity is constant, the scale of
temperature is arbitrary, so case I covers all cases in which the surface temperature is
suddenly raised. Similarly, in case II a single solution covers all values of rate of rise of
temperature.

- The analytical treatment of the heat flow in these cases, both for the exact solution (5-3)
and for the approximate equations (5-6), is given in the appendix.

The results for the solution of the exact equations (5-3), for the analytical solution of the
approximate equations (5-6) with » = 6, and for the differential analyser solution of these
same equations, are given in table 1.

These results are most satisfactory, both from the point of view of the accuracy attainable
by the use of the approximate equations with a comparatively small number 7 of intervals,
and from the point of view of the errors of the differential analyser solution of the approxi-
mate equations. '

Case 1 is extremely drastic from the point of view of the essential approximation (3-2) on
which equations (5-6) are based. This approximation is certainly not valid for very small
times when the surface temperature is 1 and the internal temperature even at a single interval
dx from the surface is still inappreciably different from zero. Without reference to the
detailed results of table 1, it can easily be seen from graphical considerations that under such
circumstances the use of this approximation will make the internal temperature begin to rise
too fast; and it can be seen from table 1 that this is what does occur. But the error in the
central temperature is never more than about § %, of the surface rise of temperature, that is,
about 5° for 1000° rise of surface temperature; and by the time the central temperature has
risen to half the surface temperature, the error is down to about 1° per 1000° rise of surface
temperature. The accuracy of the differential analyser in the solution of the approximate
equations is better than the accuracy of these equations themselves.

The values of 6, for the analytical solution (both for the exact and approximate equations)
in case II are the time integrals of the values of §, in case I, and the same therefore applies
to the errors in the results calculated from the solution of the approximate equations. At
short times, the error in the central temperature is a substantial fraction of that temperature,
which is itself small, and it seems more significant to compare this error with the instan-
taneous value of the surface temperature; the maximum errors in the ratio of §; to the
instantaneous surface temperature is 0-4 %,.

Now in view of the variation of the thermal properties, at a given temperature, between
different specimens of nominally the same steel (see end of § 2), it seems unlikely that the
thermal properties of any particular specimen of steel will be known to a greater accuracy
than 2 9%, at best. From the results of table 1 it is clear that, in view of this, the accuracy
given by the use of z = 6 in the approximation is unnecessarily high, and that the accuracy
of the differential analyser in the solution of these equations is ample.

The encouraging results obtained with » = 6 suggested that adequate accuracy for many
practical purposes could be obtained by taking a smaller number of intervals, n = 4 or
n =3, or even n = 2. If this were possible, it would simplify the machine set-up for the
slab and cylinder and would considerably shorten the running time as explained at the
end of § 6; it would also bring the square prism within the practical range of solution by the
machine.

Vor. 240. A. 3
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18 N. R. EYRES AND OTHERS ON

A test was therefore made for the plane case with constant rate of rise of surface tempera-
ture using only three intervals from centre to surface of the slab. The three-interval solution
was evaluated from the analytical results of the Appendix, to avoid confusing errors due to
the analytical approximations with any which might be introduced in the course of integra-
tion on the differential analyser.

TABLE 1
CaseI. 6,=1
central temperature 6,
' finite difference equation (n = 6)
surface partial differential
T =367 temp. differential analytical analyser
= 36.Dt/[? 0, equation solution solution
2 1-000 0-:005 0-009 0-009
4 1-000. 0-068 0-074 0-074
6 1-000 0-167 0-171 0-171
8 1-000 0-267 0:270 0-270
10 1-000 0-359 0-361 0:361
12 1-000 0-441 0-442 0-443
14 1-000 0-512 0-513 0-514
16 1-000 0:575 0575 0:576
18 1-000 0-629 0-629 0-631
20 1-000 0:677 0-676 0-679
22 1-000 0-718 0-717 0:720
24 1-000 0-754 0-753 0-757
Case II. 0, =T

central temperature 6,

finite difference equation (n = 6)

partial differential
surface differential analytical ' analyser
T = 367 temp. equation solution solution
2 2 0-001 0-002 0-004
4 4 0-065 0-077 0-076
6 6 0-292 0-320 0-318
8 8 0-730 0-763 0-761
12 12 2:16 2-20 2-19
16 16 4-20 4-24 4-22
20 20 6-72 6-76 6-73
24 24 9-59 9-62 9:59
28 28 12-73 12-76 12-72
32 32 16-07 16-10 16-05
40 - 40 23-20 23-22 23-15

Case I1I. 0, =4[50 — (T2+ 10T +50) ¢~ 75]

central temperature 6,

finite difference equation (n =6)

partial differential
surface differential analytical analyser
T =367 temp. equation “solution solution
4 0-79 0-00 0-01 0-00
16 10-33 2-01 - 2:03 2-03
32 15-90 9-39 9:39 9-35

50 16-62 14-30 14-29 14-25
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Table 2 shows the results, giving at three different points through the slab a comparison
between the exact solution, the analytical three-interval solution, the analytical six-
interval solution and the differential analyser six-interval solution.

Tapre 2. Case II. 0, =367,(=T for n=6)

finite difference equations

partial . .
P 367 differential analytical solution differential analyser
P B = 36Dt//? equation n=3 n==6 solution n =6
~Nd
—_ temperature at x =3}/
< 2 0-02 0:05 ’ 0-03 0-03
— 4 0-23 0-30 0-25 0-25
olm 6 0-66 0-76 0-69 0-69
= 8 1-30 1-41 1-33 1-32
- 5 12 3-07 3-20 3-10 3-09
16 5:37 5-51 5-41 5-39
L O 20 8-09 8-21 812 8-10
=w 24 11-10 11-22 11-13 11-11
- 28 14-36 14-46 14-39 14-35
52 32 17-80 17-89 17-82 17-78
EC:D 40 25-04 25-10 25-05 25-00
83 L temperature at x = %/
84 2 0-30 0-37 0-32 0-32
=Z 4 1-12 1-19 1-14 1-14
A== 6 2-17 2-24 2-19 2-19
e .8 3-37 3-45 3-39 3-39
12 6-08 6:16 6-10 6-09
16 9-10 9-18 9-12 9-11
20 12-36 12-43 12-38 12-36
24 15-79 15-86 15-81 15-79
28 19-36 19-42 19-38 19-36
32 23-04 23-09 23-05 23-02
40 30-60 30-64 30-61 30-57
central temperature
2 0-00 0-01 0-002 0-004
4 0-065 0-12 0-077 0-076
6 0-292 0-39 0-320 0-318
8 0-730 0-85 0:763 0-761
_ 12 2-16 2-31 2:20 2-19
<1, 16 4-20, 4-35 4-24 4-22
—_ 20 6-72 6-86 6-76 - 6-73
< 24 9:59 9-72 9-62 9-59
S > 28 12-73 12-84 12-76 12-72
O = 32 16-07 16-17 16-10 16-05
m A3} 40 23-20 23-27 23-22 23-15
)
E O The results are most encouraging. The maximum error in the central temperature in the
— 8 three-interval solution is about 1} %, of the instantaneous surface temperature (for the six-

interval solution the maximum error is about 0-4 9, so that the error is about propor-
tional to 1/n2 as would be expected), and the maximum error elsewhere is not much greater.

These results suggest that, at any rate for rough results, a two-interval or even a one-
interval solution might be adequate. For n = 1, equation (5-6) for the plane case becomes
Just

PHILOSOPHICAL
TRANSACTIONS
OF

a6
o= 2(0,~0), | (71)

3-2
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20 N. R. EYRES AND OTHERS ON
and equation (5-9) for the cylinder becomes just
a6
O~ a(0,-0), (1:2)

and the latter also applies to a square prism.

The conclusions from this work are firstly, that the analytical approximation involved in the
replacement of the space derivative by a corresponding finite difference is adequate for
practical purposes even when the half-thickness of the slab or radius of the cylinder is
divided into not more than three, or perhaps even two, intervals and secondly, that use
of the differential analyser is practicable, and its accuracy ample, for handling the equations
arising from this analytical approximation.

PART III. THERMAL PROPERTIES VARYING WITH TEMPERATURE

8. THE EQUATIONS OF HEAT CONDUCTION WHEN THERMAL
PROPERTIES VARY WITH TEMPERATURE

As already mentioned, the thermal properties of steel vary considerably with temperature,
and one of the main objects of the present work was the development of means of evaluating
solutions of the equations of heat conduction in which this variation of thermal properties
could be adequately taken into account.

The thermal properties of steel are not even functions of the temperature only, but depend
on the way it is and has been changing. This is shown, for example, by the fact that the
transformation which occurs in the neighbourhood of 720° C is observed to take place at a
temperature which depends on the previous thermal history of the material, and not at a
fixed temperature.

The present work, however, is mainly concerned with the treatment of the variation of
thermal properties in so far as they can be regarded as functions of the temperature only,
and this restriction will be understood unless the converse is explicitly stated. In practice,
this restriction is not a severe one in the present state of knowledge, since the data at present
available on the thermal properties of steel are inadequate to enable quantitative calcula-
tions to be made on any more accurate basis, and a practical method of taking into account
continuously the variation of the thermal properties with temperature is already a very
substantial advance on previously available possibilities. An outline of some possibilities of
a more accurate treatment if adequate quantitative data were available is given at the
end of § 10. |

The equations of heat conduction themselves need some consideration first.

When the thermal conductivity varies with the temperature, the equation of heat con-
duction is no longer (1-1), but

pa%‘; = div (K grad 6). - (81)

For a homogeneous substance for which the conductivity varies with temperature, this can

be written

pag—f = KV2¢9+% (grad 6)2. (8-2)
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THE CALCULATION OF VARIABLE HEAT FLOW IN SOLIDS 21

However, in practical cases the second term in (8:2) is much smaller than the first, except
perhaps in the earlier stages of heat flow in a quench; this has been verified by rough evalua-
tion of the terms in some typical cases. Even in quenching, the second term in (8-2) may still
be small compared with the first, since V20 will be large where and when (grad @) is large;
but this has not beent examined quantitatively.* On these grounds it seems that omission of
the second term in (8-2) will give an adequate approximation. Then (8-2) reduces to (1:1)
with D = K/po a function of temperature.

Although for most practical purposes it seems that the neglect of the second term in (8-2)
gives an adequate approximation, an alternative form which avoids this approximation
should be noted.

Let K, be the conductivity at some standard temperature, and let @ be a function of
temperature defined byt

6 = [ (K/K,) db; (8:3)

O can be regarded as a modified temperature, measured on a scale defined by (8-3). Then

90 K adl K
% K0 grad @ ~ X gradd,
00
so (8:1) becomes i DV?20, (8-4)

where D = K/po; this can be regarded as a known function of @. Thus it is strictly the
modified temperature @ which satisfies the simple form (1-1) of the heat-conduction equation.
This form (8:4) of the equation has not actually been used in the present work, as it was
only recognized at a late stage, and the approximation of neglecting the dK/dfl term in (8-2)
seemed adequate; but it might be advisable to use (8-4) in preference to (1-1) in the earlier
stages, at least, of the heat flow in a quench, when the instantaneous range of temperature,
and so of the conductivity, through the material is considerable. :

Another form of this equation is sometimes useful. If H(f) is the heat capacity per unit
mass at temperature ¢, namely,

H) = | " vd, | (85)
o

where « is some convenient standard temperature (taken as 50° G in table 45 of the Second
Report of the Alloy Steels Research Commitiee (1939), p. 234, then

(1/D) 06/dt = (p/K,) dH]dt, (
50 (8+4) can be written (p/K,) 3H |3t = V°6. | (8+6)

* Note added in proof, April 1946. Since this paper was written, a considerable amount of further work on
the lines given in this paper has been done, including an extensive application to heat flow in quenching.
This work has shown that in quenching it is quite possible for the dK/df term in (8-2) to be of the same
order of magnitude as the other terms, and that its neglect may, in practical cases, result in errors of the
order of 100°C in the internal temperature at a definite time after the beginning of the quench. An account
of this further work will be published separately.

t K, is only introduced in order that @ may have the physical dimensions of temperature and a magnitude
of the same order as that of the temperature itself.
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22 N. R. EYRES AND OTHERS ON

From a table of K as a function of ¢, the relation between # and @ can be evaluated, and
from this and a table of H(#), the relation between H and @ can be constructed.

A modification of this form of the heat-conduction equation, involving the neglect of the
second term in (8-2), has been used in parts of the present work. If Q(6) is a function of
temperature defined by

[ H(0)
QO) [ (0K d0 = p[ (1K) aH, (87)
o H{x)
equation (1-1) can be written % = V24, (8-8)
9Q 9%

or for heat flow in one dimension (8+9)

I dx®
From tables of ¢ (or H) and K as functions of ¢, the function Q(#) can be calculated.

In this work, the variation of the density p with temperature, arising from thermal
expansion, has been neglected. The treatment could be extended to include this variation
if required, but it should be noted that if thermal expansion is taken into account through
its effect on the density factor in the diffusivity, it must also be taken into account in its
effect on the thickness of the slab or cylinder, that is, on the space range over which the
integration is to be carried. This cancels two-thirds of its effect on the density, so that in-
clusion of'its effect on the density only is a worse approximation than neglecting it altogether.
Its effect is greater at high temperature and, in view of the uncertainty in the thermal
properties at high temperatures, its neglect seems an adequate approximation.

Although the thermal properties of steel can be represented much more closely by
regarding them as functions of temperature only than by taking them as constant, the
abnormal thermal properties of steel at temperatures in the neighbourhood of the trans-
formation temperature need further consideration if details of the heat flow and temperature
distribution in that range are required. The phenomena associated with this transformation
will be discussed in § 10.

9. APPROXIMATE TREATMENT OF THE EQUATION WITH
VARIABLE THERMAL PROPERTIES

The approximations of § 3 can be applied directly to the equation of heat conduction in
the form (1-1), (8-4), (8-6) or (8:8). For example, for one-dimensional heat flow, use of
(3-2) in the heat-conduction equation in the form (1-1) gives the set of equations (3-4).
Use of the same approximation in (8-4) gives

00; 0. ,—20.+06,_
%% = (e =200, o
its use in (8-6) and in (88) gives
poH; 6;,—26;+0;
K, 0t~ @z (9-2)
0y _ 011 —20;,4-6;-, (9-3)

and ot (5x)? >
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THE CALCULATION OF VARIABLE HEAT FLOW IN SOLIDS 23

respectively, and similarly for the equations appropriate to the cylinder and square prism.
Application of any of these forms of the equation of heat conduction enables the thermal
properties appropriate to the temperature at each point of the solid to be used in evaluating
the solutions of that equation. Equations (9-1) and (9-2) only involve the approximation
(3-2) ; equations (3-4) and (9-3) involve in addition the neglect of the dK/df term in (8-1).

A further approximation, which considerably simplifies the details of evaluating solutions,
and which in many cases gives results of adequate accuracy for practical purposes, is the use
of a diffusivity uniform through the material at each instant, but varying with the time.

As already mentioned, in most heat treatments other than quenching, the range of
temperature through the steel at any moment is never very large; further, except in the
neighbourhood of the transformation temperature the thermal properties do not vary very
rapidly with temperature, so that it may often be an adequate approximation to take the
diffusivity as uniform through the steel at each instant, with a value appropriate to some
instantaneous mean temperature ¢, though in the course of time this mean temperature
and the values of the thermal properties at that temperature, may vary over a considerable
range. With this further approximation, equation (1-1) becomes

” — D)V, (9-4)
. . 00
or for one-dimensional heat flow Frie (ﬂ) 0x2 ’ (9-5)

If the way in which the mean temperature is to be taken is specified, then D(f) is a definite
function of time, though not a known function until the solution has been carried out (unless
the surface temperature 6, is taken ds an adequate approximation to the appropriate mean
temperature #). Then for the one-dimensional case it is convenient to define dimensionless
measures 7, X of time and distance by

= (1/12)f1)(9) dt _(96)
and X = x// so that (9-5) reduces to the standard form, dimensionless in x and ¢,
a6 9%
It IX?

[compare (5-3)]. The quantity 7 can be thought of as a measure of time on a scale distorted
according to the value of D(f) at each moment and (to the approximations involved in
reducing the equation to the form (9-5)) heat flow on the distorted 7 scale of time is exactly
similar to heat flow in a material of constant diffusivity on the ordinary time scale. Applica-
tion of the approximation (3-2) for the space derivative then gives the set of equations (5-6),
with 7 now given by

T = n21 = (n2/12) f D(b) dt. (9-7)

Thus use of the approximation of a uniform diffusivity at each instant, and of the 7-scale
of time defined by (9-7), makes it possible to use the same set of equations (5-6) as for uniform
diffusivity. The only difference is that the time variation of surface temperature on the
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24 N. R. EYRES AND OTHERS ON

T-scale is not known before the solution is carried out; the surface temperature is given as a
function of true time, ¢, and the relation between the reduced time 7" and the true time ¢
has to be constructed from (9-7) as the solution proceeds. This, however, introduces no
difficulty either in the mechanical or numerical solution of the equations (5-6).

When the diffusivity does not vary much through the thickness of the material, it may be
an adequate approximation to take, at each moment, the value corresponding to the surface
temperature, so that

— (n2/2) f D(8,) dt. (9-8)

Since the surface temperature is given as a function of time, this has the advantage that the
distortion of the time scale is known before the solution of the equation (5-6) is started, and
the surface temperature is then a known function of the reduced time 7. Then there is no
difference at all between the treatment of equations (5-6) on the distorted time scale defined
by (9-8) and the treatment of those equations for a material of constant diffusivity.

Similar arguments apply, of course, to the treatment of heat flow in solids of other geo-
metrical shapes.

One treatment of two-dimensional heat flow in a cylinder, without the restriction to axial
symmetry, has been given in § 3 (d). The approximation of taking the diffusivity as uniform
throughout the material at each instant, but varying with the time, introduces the possibility
of an alternative treatment, which leads to simpler equations than the set (3:15).

The azimuthal variation of the temperature at any time can be expanded in a Fourier
series in ¢:

0 = 00+0Vcosgp+0Pcos 20+ ... +0CVsing+0Dsin 26+ ..., (9-9)
where the coefficients §™ are functions of 7 and ¢. Substitution in (9-4) leads to the following
set of equations for these functions:

00(”) 026(") 1 o™ p?
’,9’)[ ar? r ar —r_zﬁ(n):l’ (9-10)

and, in particular, the axially symmetrical contribution 6 is given by the solution of

O] _ 19200 )
a0 D 0200 196 ]

ot ~ PO Gty (9-11)

which is the same as the equation for radial heat flow.

The surface values of the quantities ® can be determined, as functions of ¢, from the
Fourier analyses of the azimuthal variation of the surface temperature at different times.
If the diffusivity is not only uniform but constant, these equations are independent and can
be solved separately, and their solutions then added together to give the resultant tempera-
ture distribution.

When the variation of diffusivity with mean temperature is taken into account, the
quantities ™ are no longer strictly independent, since, as will be seen shortly, the coefficient
D(0) entering into the equation for #® depends on the function §©, but this does not intro-
duce any practical difficulty into the evaluation of a solution of these equations. The mean,
over the cross-section of the cylinder of any of the contributions to (9-9) other than the
axially symmetrical contribution #©, is zero, hence the mean temperature ¢ depends only
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on this contribution §©. So the solution of (9-11) can be carried out first, as for radial heat
flow, and the solution determines the mean temperature  as a function of time. Then for the
solution of the other equations of the set (9-10) D(f) is a known function of time.
The r-derivatives in equations (9-10) can be dealt with as in the axially symmetrical case,
and this gives
0(91‘-"’ - D()
at  25%(or)?
The value of 6§ (for n#O) is necessarily zero, and for n5£0 this value takes the place of
equation (3:8) for n = 0 for the time variation of the central value of the contribution §©.

(& +1) 002, — (424 2n) 077 +5 (2 — 1) 072, ]. (9-12)

10. TREATMENT OF THE HEAT FLOW IN THE NEIGHBOURHOOD OF THE
| TRANSFORMATION TEMPERATURE

There are several ways of dealing with the abnormal behaviour of the thermal properties
in the neighbourhood of the transformation temperature. The simplest and crudest is to take
equation (9-5), which assumes the diffusivity to be uniform through the material, or the
equivalent equations (9-6) and (9-7), and use them even through the transformation range.
At first sight this looks extremely crude, and so it is if the temperature distribution through
the steel while it is going through the transformation range is required. But trials show that for
rates of heating occurring in practice, the subsequent behaviour of the internal temperature,
for a given time variation of the surface temperature, is only slightly affected by the abnormal
thermal properties in the transformation range. This may seem surprising, but an explana-
tion will be found in § 12. Hence, unless the behaviour of the temperature through the trans-
formation range itself is required, it may be an adequate approximation to use (9-5).

A better approximation is provided by (3-4), and a still better one by (9-2) or (9-3). One
or other of the latter sets of equations should be used if any details of the temperature
distribution through the transition range are required.

Another method is to regard the transformation as taking place at a constant temperature,
with absorption or evolution of a latent heat. For this purpose a smooth nominal specific
heat curve through the transformation range (say 710-760° C for steel no. 5, for example*)
is drawn, and the contribution from this ‘specific heat’ to the change of total heat H through
this range is found by integration. The difference between this and the whole change of total
heat is regarded as a latent heat occurring at a definite temperature of transformation
(715° C for steel no. 5, see table 41, Second Report of the Alloy Steels Research Commuttee (1939),
p. 226). It is convenient to express this latent heat as an equivalent temperature change.
If ¢ is the nominal specific heat at the adopted transformation temperature 6, (L/07) is the
temperature change which would be produced, in the absence of the transformation, by the
latent heat if the specific heat had the constant value ¢7. This virtual temperature change,
which will be written 46,; can be regarded as a measure of the thermal effect of the trans-
formation; its value is of the order of 50° C for steel 5, the exact value depending on the
way in which the nominal specific heat curve is drawn.

In a substance with a latent heat of transformation at a definite temperature, the trans-
formation at any moment is taking place (ifat all} on a surface of the material, not throughout

* For the specific heat curve, see Second Report of the Alloy Steels Research Committee (1939), section IX (3),
figures 156 A, B and tables. 7

Vor. 240. A. 4
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26 N. R. EYRES AND OTHERS ON

a volume.* The temperature gradient (or rather K(d6/dx) if the thermal conductivity is
different for the two forms of the substance involved in the transformation) is discontinuous
at the surface on which the transformation is taking place, and this surface moves through
the substance with a finite velocity. In mechanical integration of the equations, it seems
difficult to deal accurately with this situation without a substantial alteration in the machine
set-up, which it would be inconvenient to make during the course of a run. But in this
temperature region it is an approximation even to take the thermal properties as functions
of the temperature only, as already emphasized, and consequently a rougher treatment of
the resulting equations can be tolerated here than in other parts of the temperature range.
A convenient method has been developed; it looks decidedly rough at first sight, but the
results of using it agree closely with those obtained using the better approximation (9-2),
except through the transformation range itself, and it has been used extensively in the
present work.

This method is based on a crude presentation of Schmidt’s method [§ 1 (iii)] in which the
material was conceived as built up of laminae in each of which the temperature is uniform.
Then in equation (3-4) the left-hand side represents the rate of change of temperature of one
of these laminae, and the right-hand side the balance between the heat passing into and out
of it. If now a transformation is occurring in one of the laminae, say in that between
x = (j£ %) dx, the temperature of this lamina is conceived as remaining constant at 6, until
the whole of the lamina has passed through the transformation. If fis the fraction of the
material of the layer which has undergone the transformation, this can be represented by
replacing (3-4) by .

Lof

= peyn

B —20,+0;_,
0,0t

(0x)2 7

when §; reaches 0, and keeping @; constant at §, while the value of f obtained by integrating
this equation increases from 0 to 1, that is to say, while the integral of the right-hand side
increases by L/o} = A0, .

This treatment should give a fair approximation to the net heat transfer between this
lamina and the adjacent material while this lamina is passing through the transformation
range, though details will not be correct. As already mentioned, it has been found that it
gives results in close agreement with those obtained by the better approximation (9-2),
except at temperatures quite near ,, and it has the advantage of being considerably easier
to put into effect in the solution of the equations by the differential analyser (see §11).

In the case of a material such as steel there is reason to suppose that the transformation
proceeds at a finite rate depending both on the temperature and on the extent to which the
change has already occurred. Let f be the fraction of the material, in the neighbourhood of
a point of it, which is in the state characteristic of temperatures above the change point.
Instead of taking the heat content H as a function of the temperature ¢ only through the
transformation range, it is probably better to regard it as a function of f and 4. Then

0H _ 30, ,of

dat ot ot
* This can be seen as follows. If the transformation takes place at a definite temperature, then, if it were
taking place throughout a volume, the temperature would be constant throughout that volume, there would
be no temperature gradient and so no flow of heat through it, and the transformation could not continue.

(10-1)
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THE CALCULATION OF VARIABLE HEAT FLOW IN SOLIDS 217
where ¢ = 0H/d0 can be regarded as the specific heat of the material, and L = dH/df the

latent heatassociated with the transformation. The heat-conduction equation then becomes*

ot

or, if the variation of the conductivity is neglected,

,o( at+L f) div (K grad 0), (10-2)

,0( aﬁLaf) KV, (10-3)

If adequate quantitative information were available regarding the variation of the
specific heat, and the rate 9f/d¢ at which the transformation proceeds, with ¢ and f, it would
be possible to extend the methods of the present paper to the solution of equation (10-3), and
the results should give a theoretical treatment of the variation of the change point with rate
of heating or cooling, the isothermal transformation curves (‘S-curves’), etc.; and similar
data through the solidification range would enable the solidification process to be treated.
But at present it does not seem that such data exist. Indeed, at various points of the present
work progress has been held up by lack of adequate quantitative data, and whereas before
this work was started it could fairly be said that the information available on thermal
properties was in advance of the methods of using it, now the methods are ahead of the
determination of data required to enable full advantage to be taken of them.

11. APPLICATION OF THE DIFFERENTIAL ANALYSER TO THE EQUATION
OF HEAT FLOW WITH VARIABLE DIFFUSIVITY

Of the various methods in §9 for handling the equation of heat flow when the thermal
properties vary with temperature, the simplest from the point of view of the differential
analyser is that which regards the diffusivity as uniform at each instant, with a value appro-
priate to some mean temperature §. By use of the distorted 7 scale of time defined by (9-6),
the equations are reduced to the same form as those for constant diffusivity in ordinary time,
and the only new feature to be catered for is the relation between the 7-scale of time and true
time; this has to be introduced in some way, since the variation of surface temperature is
given as a function of true time.

If the diffusivity varies only slightly through the material, it may even be an adequate
approximation to take its value at the surface temperature. Then the relation between time
measures on the ¢-scale and on the 7-scale can be evaluated before the solution is begun, and
the surface temperature plotted as a function of time on the 7-scale, or more conveniently
on the T-scale defined by (9-8), and then there is no difference at all between the procedure
with varying diffusivity and with constant diffusivity.

But in using the differential analyser it is almost as easy to adopt a better approximation
and to use the diffusivity at some mean temperature §. The choice of a suitable mean
temperature will be considered shortly.

It is then most convenient to use the measure of time on the distorted 7-scale defined by
(97) as independent variable for the integration of the heat-flow equations and to derive

*  Note added in proof, April 1946. This equation is similar to thekﬂequation of heat conduction in a substance
in which a chemical reaction is taking place, which has been studied, by the method of the present paper
and otherwise, by Crank and Nicolson (1946).

4-2
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from it the measure of time on the #-scale in terms of which the variation of surface tempera-
ture is given.

The distortion of the 7-scale relative to the z-scale (or vice versa) can be represented
mechanically by connecting the shafts of the machine representing #and 7 by a continuously
variable gear giving a gear ratio proportional to the instantaneous value of D (or 1/D). An
integrator is just such a continuously variable gear; in fact from the definition (9-7) of T’
it follows that

- I[P/nZD(P)]dT. (11-1)

Hence if an integrator is displaced by an amount proportional to the instantaneous value of
1/D(6), and rotated from the shaft whose rotation measures 7, its output will be a measure
of ¢, and can be used to drive an input table carrying a graph of the surface temperature 6,
as a function of the true time ¢. The displacement proportional to 1/D() is furnished to the
machine from a second input table on which a curve of 1/D(f) as a function of ¢ is placed,
and which is driven by a shaft whose rotation measures the mean temperature 4.

It is most convenient to take # as the temperature at one of the points x; = j//n (for the
slab) or r; = ja/n (for the cylinder) which bound the intervals into which the thickness of
the slab, or radius of the cylinder, is divided. For steady heating the temperature distribution
is approximately parabolic in x (for the slab) or in r (for the cylinder), and for such a distribu-
tion the mean temperature is the temperature at x// = 1/,/3 for the slab and r/a = 1/,/2 for
the cylinder. This suggests that the best convenient approximation to take for  is () or
0(2{/3) for the slab, and 6(}a) or 6(2a/3) for the cylinder, according as a two-interval or
three-interval solution is being used. Alternatively, the mean temperature might be taken
as 0 = 1(20,+0,), which could be constructed on the machine by an adding unit and
appropriate gears. The use of a uniform diffusivity is an approximation anyway, and there
is no justification for great refinement in the choice of a mean temperature to use; all that is
needed is a guide to a better value than the surface temperature.

In this method of handling the heat-flow equations, only two more units of the machine are
used than in the treatment of the equations with constant diffusivity (for the same value of z),
namely, the input table giving the relation between # and 1/D(f), and the integrator which
constructs the relation between 7" and ¢.

Another method is to take the equations in the form (3-4) and (3-5) with the appropriate
value of D(0;) for each x;. This requires two integrators instead of one for each of the points
X;, since each 0; is constructed as the integral of the product of two varying factors D(f;) and
(0;,,—20;+40;_,) on the right-hand side of (3-4). In addition to the input table carrying the
curve of the surface temperature against time (on the ¢-scale), it requires an input table,
carrying the curve of D(f) against @, for each x;. The curves carried by these tables are all the
same, but in running the solution on the machine one has to supply the machine con-
tinuously with the values of D () for several values of  simultaneously, and this cannot be done
from a single input table.

Another method is to take the equations in the form (9-2) or (9-3). If equations (9-3) are
used, for example, the results of integrating them are the quantities @, = @(0;) where

Q= pf(cr/K) df (see (8:7)), and from these it is necessary to determine the temperatures 6,
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in order to form the integrands for the integration of the equations (9-3). This is done by
evaluating @ as a function of 6, as defined by (8-7) from the data on the thermal properties
“of the material, and using the results to draw a set of graphs of ¢ as a function of @ (not
vice versa), from which each #; can be determined from the corresponding @; evaluated by
the machine. For each «; this requires only one integrator (instead of two as required by
equations (3-4)), and also one input table carrying a graph of # against (#). Such an input
is required for each x;, although all these input curves are the same, for the reason explained
in the previous paragraph. An input table giving ¢, as function of ¢ is also wanted. This
method is perhaps the best for use in the neighbourhood of the transformation temperature;
in this temperature range, the function @ increases very rapidly with #; hence the slope of
the input curve of ¢ as a function @ is small, and the temperature is well determined by the
value of Q.

Similarly, if equations (9-2) are used, @ and H(0) would be calculated as functions of ¢
and the results used in the form of a set of graphs of @ as a function of H(0). A set of input
tables would be required, each carrying one of these graphs, also an input table giving 0,
as a function of ¢.

A simpler treatment of the transformation range can be given if the heat absorbed or
evolved in this range, over and above that expressed by a smooth nominal specific heat, is
regarded as a latent heat L absorbed or evolved at a fixed transformation temperature 6;.
Then equations (3-4) give each d0,/d¢ unless §; = 0, and for the point (or points) x; at which
0; = 0., the relevarnt equation is (10-1), and #; remains constant while f; changes from 0 to 1.
This situation can be represented on the machine by altering the connexions on the output
of the integrator which normally evaluates #; by integration of d¢;/dt. When 6, reaches ¢,,
this output is disconnected from the shaft whose rotation measures ¢,, and this shaft is locked ;
the integrator output is taken instead to a counter. The machine is then run until the counter
reads a value corresponding to f= 1; this value corresponds to a temperature change
40, = L/o;. Then the transformation is complete for that «;, the normal connexions of that
integrator are restored, and the solution continued. This procedure has to be carried out
with each integrator in turn as its output reaches the value corresponding to the transition
temperature.

Use of equations (9-7) and (5-6), appropriate to a uniform D, with a smoothed nominal
specific heat through the transformation range, and of a latent heat at a fixed transformation
temperature treated as just described, probably provides the simplest way of treating the
heat flow through the transition-temperature range. This method has the advantage of
requiring only two input tables, one for 1/D as a function of #, and one for 0, as a function of z.

Equations (9-3) should give a better approximation, especially if the heat of transforma-
tion is regarded as absorbed or evolved over a small range of temperature and not at a single
temperature, but this method requires one input table for each ¥; as well as one for the time
variation of surface temperature.

Probably the best practical method, if personnel to man the required input tables is
available, is to use equations (9-7) and (5-6) so long as all the steel is below about 680° C or
above 750°C, and (9-3) or (9-2) while the temperature of any part of the steel is between
680 and 750°. The results of § 7 and of § 14 (ii), table 3, suggest that a three-interval solution
should give adequate accuracy for practical purposes.
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In dealing with surface conditions other than given time variations of surface tempera-
tures, the procedure is rather different according as equation (4-5) or (4-8) (for the slab, or
corresponding equations for the cylinder) is used to handle these surface conditions. It will
be assumed that the relation between the surface heat flux £ and the surface temperature ¢,
is given and independent of the time, as this will probably be the most usual case; it is also
one of the simplest to handle, and the procedure does not then depend on the form of the
relation between F and #;. On the other hand, if ' does depend explicitly on the time, the
procedure will depend on the form of the relation between F, ¢ and 6,, and needs special
consideration for each case.

If the treatment is based on equation (4-5), this has to be regarded as an equation for 0,
given 0,_, and 0, _,, which are obtained by integrating the approximate equations of the set
(3-4). Provided the surface heat flux F depends only on the surface temperature 0, as
assumed, the left-hand side of (4-5) is a function of §; only. The easiest way to obtain the
solution of (4-5) for §,, continuously as 6,_, and 0,_, are determined by the machine by
integration of the appropriate equations for them, is to calculate

[20xF(0,)[K(0;) 4 30,]
as a function of ,, and to use the results in the form of a graph of 4, as a function of
[20x£7(0;) /K (0;) + 30,] .

on an input table, which will then furnish 6, as a function of 46, _,—0,_,.

The alternative treatment using equation (4-8) for the slab or (4:12) or (4:13) for the
cylinder, increases the number of differential equations to be solved simultaneously by one
for each surface but should give a better approximation as pointed out in § 4.

12. ALTERNATIVE MEANS OF EVALUATING SOLUTIONS OF THE APPROXIMATE EQUATIONS

Although the differential analyser provides the quickest and least laborious method of
evaluating solutions of the approximate forms of the heat-conduction equation with variable
diffusivity, it is in many cases quite practicable to obtain at least a fairly accurate solution
without use of it.

The results discussed in §7 suggest that solutions of accuracy adequate for practical
purposes may often be obtained by the use of quite a small number 7 of intervals to cover the
space range, and this is confirmed by some results which will be given in § 14. When this
number of space intervals is small, it has been found quite practicable to use numerical
methods for the integration of the set of equations (3-4) or (9-3) (for the slab, and the similar
equations for radial heating of a cylinder), using an integration formula correct at least to
the first difference of the integrand for the time integration, and so substantially more
accurate than Schmidt’s method, and also using the diffusivity appropriate to the in-
stantaneous temperature at each point.

In particular, when use of one interval from the surface to the central plane of a sym-
metrically heated slab, or from the surface to centre of a symmetrically heated cylinder,
gives adequate accuracy, the relevant equation is (3-5) or (3-8) respectively, or the corre-
sponding finite-difference form of (8:4), (8:6), or (8:8). Then, provided the time variation of
surface temperature is smooth, numerical integration of either of these equations, using
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integration formulae correct to second differences for the integration with respect to time,
is simple and quick. The condition of smoothness of the time variation of surface temperature
is important, since otherwise the time differences of d0,/d¢ are irregular and unsatisfactory
for use in integration formulae; this is a practical restriction on numerical methods which
does not arise in the use of the differential analyser, which carries out the time integration
continuously, instead of step by step.

With n = 2, a similar process is still quite practicable in these cases, and does not involve
the use of a diffusivity uniform through the material at each instant. But with higher values
of n, numerical integration of these sets of equations, even using integration formulae correct
only to first differences for the time integration, becomes lengthy and tedious; the number
of time steps required to cover a given period is proportional to 7%, and the work involved
in each time step is roughly proportional to # at least, so the total amount of work increases
as n® at least.

For two-dimensional heat conduction in a cylinder with a given, not axially symmetrical,
time variation of surface temperature, it has been found practicable to evaluate a solution of
(3-15), or rather of the corresponding finite difference form of (8-8), using two intervals
0r = 4a in radius and four of length d¢ = in in azimuth, for which there are five equations
in all.

Another method for obtaining quickly the approximate time variation of the central
temperature in a slab or cylinder, symmetrically and steadily heated, from the time variation
of the surface temperature is given in §13.

Still another method is suggested by the formal equivalence of the set of equations (3-4)
or the set (3-7) to the equations for the potentials in a ‘ladder network’ of C, R loops, with
the resistances in series and capacities in parallel. This equivalence shows that the distribu-
tion and time variation of temperature satisfying these equations can be simulated (perhaps
on a different time scale) by the time variation of the potential distribution in a corresponding
network with suitably controlled potentials applied at points corresponding to the surfaces.
This forms the basis of the electrical instrument of Paschkis & Baker (1941, 1942) ; an experi-
mental instrument of this kind was devised and constructed independently in the course of
the present work [see Jackson and others (1944), §4]. Such an instrument in its present form
only applies directly to the evaluation of heat flow in a material whose thermal properties
are independent of temperature. However, to the approximation involved in taking the
diffusivity uniform throughout the material at each instant, but varying with the time
according to the mean temperature  (see §9), this instrument can be applied to evaluate
heat flow in a material with thermal properties varying with the temperature. The time of
operation of the electrical instrument is then proportional to the measure of time on the
distorted 7-scale, defined by (9-6), for the corresponding heat flow; the surface temperature
would be given as a function of true time ¢, so a variable-speed gear would be necessary to
give the relation between 7 and ¢.

13. THE ‘TIME-LAG’ APPROXIMATE SOLUTION FOR SLOW STEADY HEATING

Another type of approximate solution of the equation of heat conduction, for a sym-
metrically heated slab or cylinder, and one whose evaluation requires the minimum of
numerical work, is suggested by a property of the exact solution for the case of constant
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diffusivity, and for surface temperature uniform and increasing at a constant rate. This
property, which has been pointed out by Williamson & Adams (1919; see p. 108), is that
under these conditions the temperature at any internal point ultimately lags behind the
surface temperature by an amount which, when expressed as a time lag, is independent of
the rate of rise of surface temperature. ’

This property was only established by Williamson & Adams for simple geometrical shapes,
and as a deduction from the formal solutions which can be obtained for these shapes. But it
is more general, and applies to any shape of solid which is bounded in the direction of the
flow of heat, whose surface temperature is uniform and increasing at a constant rate. This
can be seen as follows.

Let x(r) be a function of position satisfying

Viy = —1 (131)

throughout the volume of the solid, and y = 0 on its surface or surfaces, so that y is positive

throughout it. Then
0 = plt—x(r)/D] (13-2)

is a solution of (1-1) (for constant diffusivity D) with § = ¢ on the surface. Further, the
general solution of (1-1) with this surface condition differs from (13-2) by a quantity which is
a solution of (1-1) which is zero over the surface; this represents a starting transient which
depends on the initial temperature distribution and tends to zero as the time increases (for
examples, see Williamson & Adams (1919), formulae (15), (16), (17)). Hence (13-2) repre-
sents the ultimate behaviour of the temperature through the solid. The quantity y(r)/D is
the lag between the times at which the temperature at the surface and the temperature at
the point r pass through any given value; this is independent of the rate of rise of surface
temperature, since the equation and boundary conditions determining y do not involve f.

For a symmetrically heated slab of thickness 2/, the time lag between surface and centre
is /2D, and for a symmetrically heated solid cylinder of radius a it is a2/4D; these values
follow directly from formulae (15) and (16) of Williamson & Adams (1919). The numbers 2
and 4 in the formulae for the time lag in these two cases are very closely related to the
coeflicients 2 and 4 in equations (3-5) and (3-8) respectively. In fact, in both these cases the
distribution of temperature through the slab or cylinder ultimately become parabolic (see
formulae (15) and (16) of Williamson & Adams 1919), and then the fundamental approxima-
tions (3-2) of the present method is exact, so equations (3-5) and (3-8) are exact and can be
used to go from centre to surface in one interval dx for the plane, and similarly for the cylinder;
and the time-lag property for constant rate of rise of surface temperature can easily be
deduced from these equations.

Now for a substance for which the diffusivity varies with the temperature, it has been
shown in § 9 that if the diffusivity does not vary greatly through the material at any one time
(though it may vary considerably in the course of time), the heat flow can be reduced
approximately to the heat flow in a substance of constant diffusivity on a distorted scale of
time which has been called the 7-scale.

Hence, if the rise of surface temperature is constant on the 7-scale, the central temperature
will follow the surface temperature with a time lag which is constant on the 7-scale (and which
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on this scale has a value of § for a slab and } for a cylinder), and which varies on the ¢-scale
according to the value of the diffusivity, that is, according to the mean temperature.

Further, consider a variation of surface temperature at a constant rate on the 7-scale,
followed by another variation at a different constant rate (see figure 1). It takes about four
times the time lag for the starting transient to become negligible, so that the central tempera-
ture follows the surface temperature after the lapse of the appropriate time lag. Hence, if
each straight portion of the curve of 4, against 7, lasts longer than a period of about 2 in 7 for
the slab, or 1 in 7 for the cylinder, the curve of central temperature against time will consist
of a series of nearly straight portions parallel to successive portions of the curve of surface
temperature, displaced horizontally from it by the appropriate time lag, and joined together
by curved portions in the neighbourhood of the sudden changes of rate of rise of surface
temperature. ’ '

05

t
FIicure 1

Now suppose these sudden changes smoothed out, then’it seems likely that so long as
30,/0¢ changes slowly, the central temperature will follow the surface temperature approxi-
mately with a time lag in 7 of } for a slab or % for a cylinder. It is not necessary that df,/dt
should be small in order that this approximation should apply; what is important is that it
should not change by a substantial amount in 1 or 2 units of time on the 7-scale.

In terms of true time £, this means that so long as [1/D(f)]d0,/0¢ changes slowly, the
central temperature will follow the surface temperature with a time lag /2/2D(0) for a slab,
or a?/4D(0) for a cylinder. The variation in [1/D(6)] d6,/d¢t may arise from the variation of
either factor in this product; if the heating is steady the second factor varies slowly, and if the
heating is also slow, the first factor varies slowly, so this ‘time-lag’ solution may be expected
to apply in cases of slow, steady heating. .

Between the times ¢,(0), ¢,(¢) at which surface and centre respectively pass through any
temperature ¢, the mean temperature § passes through this temperature, so that the time-
lag solution can be written

ty(0) = t,(0) +12/2D(6) (13-3)
for a symmetrically heated plate or slab of thickness 2/, and
14(0) = £,(6) +a%/4D(0) (13:4)

for a symmetrically heated cylinder of radius a.

Vou. 240. A. 5


http://rsta.royalsocietypublishing.org/

JA '\

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

34 N. R. EYRES AND OTHERS ON

This approximate solution is so simple that it would be surprising if it is not already
known, but we have been unable to find any reference to it in the literature.

In most heat treatments other than quenching, the variation of surface temperature is
slow, and often very slow, on the 7-scale of time, which is the natural scale of time to use in
heat-flow contexts and in which the unit of time is /2/D for a slab and ¢?/D for a cylinder, so
the ‘time-lag’ solution may often give results adequate for practical purposes. An example
will be found in § 14. .

The slowness, in this sense, in the variation of surface temperature is the main reason why
the internal temperature distribution after all the steel has passed through the transforma-
tion range does not depend on the details of the heat flow through that range, and why,
therefore, a crude treatment of the thermal properties through that range is adequate
provided that details of the temperature distribution through that range are not required.

More generally, if the surface temperature is given as a function of the time, the tempera-
ture distribution in the material at any time depends to a considerable extent only on the
behaviour of the surface temperature over an immediately previous period of about a unit
of time on the 7-scale; earlier stages in the thermal history have little influence on the
temperature distribution at that time or subsequently.

14. SOME EXAMPLES AND GOMPARISON WITH EXPERIMENTAL RESULTS

Some examples will now be given of the use of the method of this paper for the approxi-
mate solution of the equation of heat conduction in a material whose diffusivity is a function
of temperature. In three of these examples, some experimental data on internal tempera-
tures are available for a comparison with the results of calculation. In the fourth, the
purpose of the calculation was the determination of the internal temperature distribution
in a case taken from works practice, for which the only available measurements were of the
surface temperature.

Comparison between calculated and observed temperature distributions do not always
show complete agreement, and sometimes the differences are considerable (reference is
made to one such case in (ii) below). In discussing such comparisons, two separate possible
sources of discrepancy must be kept clearly distinct. Firstly, calculations have to be done for
- definite assumed conditions (for example, axial symmetry may be assumed in the case of a
bar or ingot), and for assumed values for the thermal properties, and these may not provide
adequate representations of the condition and values occurring in the experiments; for
example, the heating may depart appreciably from axial symmetry, or the transformation
may be so delayed that thermal properties in the neighbourhood of the change point may
not be those assumed. Secondly, although the form of the equation of heat conduction used,
and the values for the thermal properties used in it, may provide an adequate representation
of the actual conditions, approximations are involved in reducing it to the finite-difference
form to which the method of solution is applicable.

The small number of intervals into which the space range is divided in evaluating these
solutions might suggest, at first sight, that the approximations involved in the use of finite
differences in the space co-ordinates might well be the main source of discrepancy between
calculated and observed internal temperature distributions. However, this source is not
serious in practice. Moreover, although an exact solution of the equations of heat conduction
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with variable diffusivity cannot be obtained, an estimate can be made of the errors arising
from the use of the analytical approximations (3-2) and (3-3) on which the method of solution
is based, and corrections made for them if appreciable; for an example, see (ii) below.
Although formally this correction is itself only approximate, it is probable that the residual
errors after it has been applied will usually be small, and then the only source of discrepancies
outside the limits of experimental error is the difference between the conditions, including
values and thermal properties, for which the solution of the equation of heat conduction was
calculated and the condition of the experiment.

(i) 14-ton ingot. The first trial of the method of calculation with diffusivity varying with
temperature, and the first comparison between the results of such a calculation and experi-
ment, was carried out on the results of such an experiment on a 14-ton octagonal ingot of
mean diameter 28 in., the data being immediately available. This experiment had been
carried out in the Research Department of Messrs Hadfields Ltd. in 1927, as one of the first
steps in the study of the internal temperature distribution in masses of steel under conditions
of works practice.

The ingot was a medium carbon steel of composition resembling steel no. 5 (Second Report
of the Alloy Steels Research Committee, 1939, table 46). It was heated in a furnace, and
measurements of temperature made by thermocouples. Difficulties were experienced due to
couple breakage; the most satisfactory results are shown in graphical form in figure 2.

For the calculation of the central temperature, the heat flow was considered to be radial ;
the values of the thermal properties were taken to be those of steel no. 5; the radius was
divided into six equal intervals for the solution of equations (3-7) and (3-8), and the solution
was carried out by the differential analyser.

For this preliminary work the approximation expressed by (9-5) was adopted; in this the
diffusivity is taken as uniform through the material at each instant though varying with the
time. Further, the latent heat at the change point was neglected.

It had previously been verified that slight irregularities in the curve of surface temperature
against time had little effect on the central temperature, so the surface temperature curve
obtained from the observations was smoothed and the smooth curve adopted as input for
the evaluation of a solution. The smoothed curve of surface temperature, and the calculated
curve of central temperature, against time, are shown in figure 2, for comparison with the
experimental results.

In view of the difficulty of making measurements of this kind under works conditions, and
the limitations of the pyrometric methods available in 1927, the agreement is satisfactory,
and was good enough to encourage further work both on the experimental side and in the
further development of the method of calculating heat flow. Indeed, in view of the dif-
ficulties found in later work on the laboratory scale, the degree of agreement of these early
experimental results with the results of calculation appears surprisingly good.

(ii) Laboratory measurements of 13 and 33 in. bars. Experimental conditions can be more
closely controlled in experiments on the laboratory scale than those on the works scale, and
a set of experiments was carried out in the research laboratories of Messrs Hadfields Ltd. on
the heating of 13 and 3} in. diameter bars under conditions which were designed to give
a close approach to radial heating; the experimental methods are given in the paper by
Jackson and others (1944). For each experiment, the time variation of surface temperature

5-2
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was used as input for a solution of the set of equations (3-7) and (3-8), and the calculated
time variation of central temperature was compared with that observed.

The first experiment, on a 1£ in. bar, gave results which showed no agreement at all
between the observed and calculated central temperatures; the calculated central tempera-

1000%
observed surface
temperature\
observed centre
temperature
SO00F
smoothed_surface .
temperature \\
o 600p
g calculated centre
8 temperature
400¢
_— I 2
200
4 8 12 16 20,

time in hours

Ficure 2. Time variation of surface temperature, and of observed and calculated
central temperatures, in heating of 14-ton ingot.

ture agreed closely with that given by the ‘time-lag’ solution of § 13, whereas the time lag
between surface and observed central temperature was about four times as large as that given
by (13:5). The experiments had, however, been carried out with considerable care, and
apart from this comparison with calculation the results appeared quite satisfactory and
would have been accepted without question had the calculation not been made.
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The violent discrepancy between calculation and observation found in this experiment
emphasized the difficulties in making satisfactory experimental determinations of the tem-
perature distribution in the interior of masses of steel under non-steady conditions, and the
care which must be exercised in accepting such experimental determinations without at least
an approximate check from calculation of an appropriate solution of the equation of the
- heat conduction. Itled to a critical examination and revision of the experimental technique
involved, which finally resulted in satisfactory agreements between observed and calculated
central temperatures. For a discussion of the experimental aspects of this work, see the paper
by Jackson and others (1944). "

The heating of the 1§ in. bar was rather inconveniently fast for the satisfactory recording
of the temperatures, and the best experiments, both on this account and for the better
approximation to radial heating, were those done on a 3} in. bar. This was of steel no. 5;
it was normalized before the experiment, in which it was heated~to 960° C, cooled in air to
430° C, and then again heated.

Results for the first heating are given in table 3 in the form of observed surface and central
temperatures, and four calculated central temperatures, as functions of time. The four
calculated central temperatures were obtained as follows:

(a) by solution of equation (3-8) (replaced by the corresponding finite difference form of
(8:8) through the range 680-750° C), taking one interval dr = a from the surface to the
centre of the cylinder;

(b) similarly, but taking two intervals dr = /2 from surface to centre;

(¢) by use of solutions (@) and () to correct approximately for the errors due to the use
of the approximations (3-2) and (3-3) and so to obtain a better approximation to the solution
of the partial differential equation;

(d) by the ‘time-lag’ solution (13-5).

The calculated solutions (@) and () were obtained by numerical integration rather than
by the differential analyser, so that the small differences between these solutions should be
certainly significant and not subject to possible doubts regarding the accuracy of the
differential analyser with graphical input. The two-interval solution was not carried over
the whole period, as it was apparent that over considerable ranges its difference from the
one-interval solution would be less than 1°C.

The leading terms in the errors due to the use of approximations (3-2) and (3-3) are
proportional to 1/n2, where z is the number of intervals into which the space range is divided;
hence the solution of the partial differential equation lies outside the interval between the
solutions (a) and (b) with n = 1 and 2 respectively, at a distance from the latter of about one-
third the difference between them. In the present case the greatest difference between the
two solutions is only 3° G, so even including the transformation range the greatest error in
the two-interval solution is only about 1° C and that of the one-interval solution only about
4° C. The approximation made in obtaining the latter solution appears at first sight to be
very crude, and the accuracy of the results given by it seems remarkable.

The accuracy of the time-lag solution (13:-5) over the range for which it is applicable
(that is, excluding the transformation range 680-750°C) is also surprisingly good. This
suggests that, provided the measurement of internal temperatures is thoroughly reliable, the
time lag between surface and central temperatures passing through the same value might be
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used as a means of measuring thermal properties under transient conditions. Further
reference will be made to this possibility later.

Solution (¢) provides an estimate of the solution of the partial differential equation, with
the adopted values for the diffusivity and for the time variation of surface temperature, with
a probable error of less than 1°C, and any greater departures of the observed central

TABLE 3. HEATING OF 3% IN. BAR. COMPARISON OF CENTRAL TEMPERATURES
AS CALCULATED BY DIFFERENT METHODS, AND AS OBSERVED. STEEL NO. 5

time . surface central temperature ¢, (° C), calculated
t temperature ~ A~ -
min. g, (° C) a b ¢ d observed
0 25 25 25 25 25 25
1 107 67% 65 64 58 e
2 - 170 131 130% 130% 130 114
3 216 1833 1831 1831 1841 —
4 255 226% 2261 226% 226% 210
5% 312 283 - — 282 271
7 368 3374 — — 3361 329
8% 421 3891 s — 389 383
10 468 4374 — — 4361 433
11} 512 481 — — 480 477
13 553 521% — — 520% 518
14 . 587 558 — — 558 556
16 619 5901 — — 5894 586
17% 647 619 -— - 619 617
19 672 645} — — 646 644
20% 693 6674 — — 666 664
22 712 686 6851 685} 683 686
231 729 ‘ 702 701 701 699 704
25 740 712 710% 710 — 720
261 742 717 714 713 —- 725
28 746 724 723% 723% — 726
294 752 734 — — 7424 728
31 761 743 — — 747 732
34 785 7641 — — 765 754
37 816 796 — — 799 794
40 844 8291 — — , 830 825
43 864 8534 — — 854 —
46 ; 882 873 — - 874 874

Calculated values of 6,:
(a) obtained by use of equation (3-8) with one interval ér = a from surface to centre;

(b) obtained by use of equations (3-7) and (3-8) with two intervals &7 = a4 from surface to centre;

(¢) obtained by combination of results under (¢) and (b) to correct (approximately) for the errors of the
finite-difference approximations (3-2) and (3-3);

(d) obtained by use of the ‘time-lag’ method (§ 13).

temperature from that so calculated must be due to departures of the thermal properties or
the variation of surface temperature adopted in the calculations from those actually ap-
plicable to the material and conditions of the experiment, or to errors in measurement of the
central temperature.

The general agreement between the observed central temperature and that so calculated
is very satisfactory, considering the difficulties of the experimental measurements. It is
certainly good enough for outstanding substantial differences hetween observed and calcu-
lated results to be regarded as significant and not spurious. The main outstanding difference
is in the behaviour of the temperature in the range 700-770° C, in which the observed curve
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shows a flattening at a higher temperature than does the calculated curve. This flattening is
due to the absorption of heat at the a—y transformation which takes place in this range. The
values of the thermal properties used in the calculation were taken from the Second Report of
the Alloy Steels Research Committee (1939), and refer to very slow heating, when for this steel the
transformation takes place in a small temperature range in the neighbourhood of 715° C.
It is clear that under the conditions of the experiment the transformation is delayed and
occurs mainly at about 725° C. This delay is still more marked in the cooling, in which the
transformation takes place at about 680° C.

Similar calculations for the second heating showed appreciably less good agreement with
experiment than those of the first, to a degree which suggested that the thermal properties
had been appreciably modified by the heating to 960° and subsequent cooling. This can be
best examined by comparing the time lags between surface and centre temperatures in the
two cases, since, as already pointed out in §13, this time lag is independent of the rate of
heating and, although the time-lag solution is not exact, errors are likely to be similar so long
as the time variations of the surface temperature are similar, so that alterations in the time
lag can be regarded as significant indications of changes in thermal properties.

Values of the time lag in the two heatings and in the cooling, at a series of temperatures,
are given in table 4, and appear to confirm the suggested alteration of the thermal pro-
perties. They do not show whether the alteration is in the specific heat or conductivity or
both, but the results show the possibility of using the time lag to obtain at least partial
information on the variation of thermal properties in the course of a heat treatment.

TABLE 4. 3} IN. DIAMETER BAR. OBSERVED TIME LAG
BETWEEN SURFACE AND CENTRE

time-lag in minutes

temp. ° C first heating cooling second heating
100 e 1-0 — —
200 11 — —
300 11 — e
400 1-2 — —
500 1-4 1-7 1-7
550 1-5 1-6 17
600 1-6 1-8 2-0
650 1-9 change point 2-1
700 2-1 2-1 2-5
750 change point 2-0 change point
800 2-5 2-0 2+5 ;
850 2-0 1-8 1-9

(iil) Asymmetrical heat flow in a cylinder. In some later experiments under works conditions,
an ingot of 11 in. square section, of nickel-chromium-molybdenum steel of composition
similar to steel no. 12 (Alloy Steels Research Committee 1939), was heated in a works furnace,
and measurements of temperature at a section half way along the length of the ingot were
made by thermocouples arranged as shown in figure 3. The observed surface temperature
showed marked departures from uniformity round the perimeter of the section, and this case
seemed an admirable one for exploratory work in the treatment of heat conduction without
the restriction to axial symmetry.
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40 N. R. EYRES AND OTHERS ON

For reasons which will be explained shortly, the calculations were carried out for a
cylinder of diameter 2a equal to the side of the square section. The method of partial heat
flows indicated at the end of §9 was used until the highest temperature reached 680° C.
From there two separate calculations were made by different methods to examine the
difference between their results; in one calculation the method of partial heat flows was

19
o]
15 positions of
]
couples in
2lje 170 |4 el8 920
® .
900 18 900
®
22
800 800
700 700
600 600
t%gp mean surface t%g\p‘
500 300}
400 400
calculated centre
300 300
200 200
100 100}
0 ] 2 3 4 5 0 191514 18222016 14 17 2)
time in hours ‘— couple numbers ——
vertical horizontal
section section

Ficure 3. Asymmetrical heating of 11 in. square ingot. Left, curves show time variation of mean
observed surface temperature and calculated central temperature; points show observed central
temperature. Right, curves show calculated variations of temperature in horizontal and vertical
sections at half-hourly intervals; points show observed temperatures.

continued right through the transformation temperature range; in the other the finite
difference form of (8:8), in plane polar co-ordinates, corresponding to the finite difference
form (3:15) of (3-14), was used, with two intervals ér = e in radius and four intervals
0¢ = 4m in azimuth. The differential analyser being engaged at the time on other work, the
calculations were carried out numerically and were found to be quite practicable.

This treatment of the heat flow means that the solution refers to the interior of the
cylinder inscribed in the square prism formed by the ingot itself. This would, of course,
be carried out without reference to the surface temperature distribution of the ingot, if the
temperature distribution on the circumference of the section of the cylinder were known.
In general, this would require temperature measurements in the interior of the ingot, but


http://rsta.royalsocietypublishing.org/

L

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THE CALCULATION OF VARIABLE HEAT FLOW IN SOLIDS 41

so long as only four intervals are used to cover the range 27 of azimuth, the temperatures at
the points of contact of the cylinder with the square prism in which it is inscribed provide
all that is required for the approximate solution of the equation of heat conduction for the
cylinder. If, asin the present case, the temperatures at these four points form all the available
data on the distribution of surface temperature, it seems better to solve the equation of heat
conduction for the inscribed cylinder than for the whole square prism. For with the equations
appropriate to a square prism, the best that could be done would be to take a net of side a,
which would give only a single equation, namely, that for the central temperature, and,
moreover, this equation is the same as that for a cylinder treated with one interval dr = a
from surface to centre; whereas by using the equations appropriate to asymmetrical heat
flow in the inscribed cylinder, it is possible to take smaller intervals in the radius, and to treat
more closely the departure from radial flow of heat.

The distribution of temperature given by the observations suggested, before the calcula-
tion had been started, that the observed values were not all reliable, but it was impossible to
determine from the measurements alone which were at fault. Under these circumstances it
is arbitrary which are accepted; but since for the purposes of calculation the values of the
surface temperature are the essential quantities, it was assumed that these were correct, and
the calculations were carried out on this basis. But its arbitrary nature must be remembered
in comparing the results for the internal temperatures with those observed.

The results are shown in figure 3. The left-hand part of this figure shows by curves the time
variation of the mean of the four recorded surface temperatures, and the calculated central
temperature; the observed values of the central temperature are shown by plotted points.
In the right-hand half of figure 3, the curves show the calculated variations of temperature
along the horizontal and vertical diameters at various times; the plotted points indicated
measured temperatures. In the higher part of the temperature range, the full curves show
the solution calculated by the method of partial heat flows (see end of § 9) and the broken
curve that calculated by use of the finite difference form of (8-8). The latter should be con-
siderably the more accurate, as the approximation on which the method of partial heat
flows is based fails through the transformation temperature range.

The instantaneous temperature distributions calculated by the method of partial heat
flow are nearly parabolic; those calculated by the more accurate method depart appreciably
from the parabolic form (see particularly the vertical distribution at time 43 hr.), as would be
expected when there is a large variation of specific heat over the cross-section. The way in
which the results calculated by the rough partial heat flow method quickly approach those
calculated by the more accurate method as soon as all the material has passed through the
transformation temperature range should be noted. This is typical of the way in which quite
rough methods, too rough to be used through the transformation range itself, have often
been found in the course of this work to give good results again quite soon after the trans-
formation range has been passed.

The agreement between observed and calculated internal temperatures is fair. The
calculated variation of temperature along both diameters is considerably more regular than
that observed, and this strengthens the suggestion that not all the temperature measure-
ments are reliable. As there is no evidence, apart from comparison with the results of
calculation, as to which are to be accepted as reliable, there seems no object in discussing

Vor. 240. A. , 6
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42 N. R. EYRES AND OTHERS ON

this comparison in detail. The main result of this work is that it establishes the practical
possibility of carrying through calculations for asymmetrical two-dimensional flow in a
cylinder.

(iv) Large forging. As an example of the application of the method to the calculation of the
internal temperature distribution in masses of steel under conditions of works practice,
figure 4 shows the results of calculation for a large ingot in heating, forging and reheating
operations. The surface temperature was measured by optical pyrometers, and was assumed
uniform for the purpose of the calculation, which was done on the differential analyser,
using three intervals in the radius of the cylinder. For simplicity, the radius during the forging
period was taken as constant and equal to the mean of its actual initial and final values. The

1100
1000}
surface
9 temperature
s 900 radius r-a temperature
g temperature
- at radius
800 uniform r=3a
temperature
assumed . p
700} diam39———'.+—diam.33 _
forging operation
_ heat flow calculated for diam.36

) ) —8 10 12 16 20 24
time in hours

F1GURE 4. Time variation of temperature distribution during heating and forging of a 39 in. diameter
steel ingot. Surface temperature observed; internal temperatures calculated.

heatgenerated during forging was neglected, as, although its total amount could be estimated,
its distribution was unknown; also neglect of it leads to an under-estimate of the internal
temperatures after forging, and so to an over-estimate of the time required for reheating
which is safer in practice than an underestimate. If the distribution of the heat generated
internally were known, it could be included in the solution of the equations.

These examples will serve to give an idea of the range and scope of this method for
evaluating solutions of the equation of heat conduction without restriction to constant
diffusivity, and of the application of the differential analyser as a practical means of carrying
out these calculations. Although the examples refer to heat conduction in steel, the method
is clearly applicable as it stands to heat conduction in other materials and to diffusion.
Moreover, only minor extensions are required to handle inhomogeneous bodies of simple
geometrical forms, such as a cylinder surrounded by a sheath, of uniform thickness, of
another material, the diffusivities of both materials depending on temperature. Another
minor extension from the point of view of technique is to heat conduction in materials in
which heat is being generated ; some examples of results have already been given elsewhere
(Hartree 1943).
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PART IV. COOLING OF A CAST INGOT

15. EQUATIONS OF HEAT FLOW INCLUDING RADIATIVE HEAT TRANSFER,
AND THEIR APPROXIMATE TREATMENT

In the casting of an ingot, molten steel is poured into a mould. Soon after the outer surface
of the steel has become solid, a gap forms between the outside surface of the ingot and the
inner surface of the mould, and increases in width as the mould heats up and expands, and
the ingot cools and contracts. From the time when the gap is formed, which is a very short
time after pouring compared with the whole time during which the ingot is cooling, transfer
of heat from the cooling ingot takes place by conduction through the ingot and through the
mould walls, and by radiation across the gap. ‘

It seemed that it might be possible to extend methods of the previous sections to deal with
this situation. There were available results of some experiments in which the time variations
of the temperatures of the mould at its outer surface, half way through its wall, and just
within its inner surface,* and also the central temperature of the ingot had been measured;
the outer surface temperature would provide data for a solution of the appropriate equations,
and the observed central temperature would serve for comparison with the results of such a
solution. '

In these experiments, the ingot and mould were of square section with rounded corners.
For a first experimental application of this technique for solution of the heat flow equations,
it seemed an adequate approximation to treat the ingot as a circular cylinder of area equal
to that of the actual square section, and the mould walls as portions of uniformly heated
planes, and the following discussion will refer to this case. The cast iron of the mould and the
steel of the ingot may not have the same thermal properties. Where it is necessary to dis-
tinguish between them, suffixes 7 and m will be used to indicate values referring to the ingot
and to the mould respectively; values of the thermal properties for each must, of course, be
taken at the appropriate temperature.

Let a be the radius of the ingot, / the thickness of the mould walls, 6, ,, ... #, the tempera-
tures at points at equal spacings &7 = a/nalong a radius of the cylinder (, referring to the centre
and 6, to thesurface),andd,,,, ...,0y the temperatures at points at equal spacings dx={/(n— N)
(not necessarily equal to dr) through the mould wall, 4, ,, referring to the inner surface and
0 to the outer surface; ¢y = 0, will be regarded as given as a function of the time, so that
there are N unknowns 6, to f_;, and N equations are therefore required to determine them.

The transfer of heat by conduction through the ingot and through the mould wall can be
treated exactly as already described in Part IT; this provides z differential equations for the
internal temperatures , to §,_, in the ingot, and N—n—2 for the internal temperatures,
0,5 to Oy_, in the mould. Two more are required to give the temperatures on either side of

* The measured temperatures on the inside surface of the mould were regarded as not altogether reliable.
The work described in this Part arose originally from an enquiry as to what information could be obtained
from the measurements of temperature on the outside of the mould, half way through it and at the centre
of the ingot only. It will appear that internal temperatures are only required at one time, in order to provide
initial conditions for the work, and that thereafter the time variation of temperature on the outside surface
of the mould alone provides sufficient data for the determination of the internal temperature distribution -

and its variation with time.
6-2
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44 N. R. EYRES AND OTHERS ON

the gap between ingot and mould. These are given by the equations of radiative heat transfer
across the gap. Fortunately these do not depend on the width of the gap, so that the fact that
little is known quantitatively about the width of this gap is no barrier to the solution of the
heat flow equations.

Radiative heat transfer between two parallel plane surfaces has been considered by
Saunders (1929), Fishenden & Saunders (1932) and others, for general values of the emis-
sivities of the two surfaces. If7;, 7,, are the emissivities of the surfaces of the ingot and mould
respectively, and « is Stefan’s constant, the net radiative heat flux from ingot to mould is

(0= 0L.). (15:1)

If the two emissivities are the same and equal to 7 this becomes
[7/(2—n)] (0 —07.1), (15-2)

but even if the emissivities of the two surfaces are not equal, (15-2) and (15-1) are equi-

valent if
7] = 277m772/(77m+”z)9 (15.3)

thatis, 7 is the harmonic mean of the emissivities of the two surfaces. With this understanding,
(15-2) can be used for the net radiative heat flux, without implying that the surfaces have the
same emissivity. v

This radiative heat flux across the gap must be equal to the heat flux by conduction
immediately inside the materials of the ingot and mould, which are —K;(36/dr), and
-—-K,,(00/0x),,., respectively. Hence '

—Ki(00/0r); = — K,,(06]0x),,,., = [7/(2—n)] (03— 0}.).- (15-4)

This provides the two further equations which are necessary to enable the N temperatures
0, to 0y_, to be determined.

The temperature gradient at the surfaces of the solids which occur in (15-4) can be dealt
with by any of the methods indicated in §4, and thus the equation of radiative transfer of
heat can be brought within the scope of the methods already considered.

If the approximation (4-3) is used for these temperature gradients, the first of equations
(15-4) becomes just a linear algebraic equation

(K;for) (30,— 40, +4-0,_5) = (K,,/0%) (30,41 — 40,154 0,15). (15°5)

16. APPLICATION OF THE DIFFERENTIAL ANALYSER

In the application of the differential analyser, the only new feature is the treatment of the
equations (15-4) expressing the relations involved in the radiative heat transfer across the
gap between ingot and mould. The temperature up to ,_, in the ingot and from 6, , out-
wards in the mould are given by integration of the corresponding time derivatives given by
(3-7) and (3-8) for the ingot and (3-4) for the mould.

If (4-3) is used for the surface temperature gradient, (15-4) becomes a pair of simultaneous
algebraic equations for 6,, , , | in terms of the neighbouring temperatures. This situation can
be handled on the machine by an interconnexion of two input tables with the output shafts
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from the integrators evaluating the neighbouring temperatures, as shown schematically in
figure 5. This interconnexion determines ¢, and @,,,, which are then combined with the
neighbouring temperatures to form d6,_,/d¢ and 80, ,/dt. The set-up shown in figure 5 is
only one of several possibilities but it seems to be the most convenient; in this set-up the
- fourth power is taken of the lower temperature 0, ,, and the Aigher temperature 0, is found as
the fourth root of its fourth power; these two steps could be reversed, but the arrangement
shown in figure 5 is preferable.

4 L
4
aad ey | Sl
] 1040 ..—6 inputs constucted
e 340015 =001s) from outputs of
B (40,1 —0,) integrators
= 0n+l
20, } outputs
_“:_ ﬂ (3011_40 -1 +0n—2)
KOra
2] Ko,

Ficure 5. Schematic diagram of differential analyser connexions for handling the equations of

radiative heat transfer in the form
1K, ox 1 5 adx
ﬁ(?’en - 4071——1 + 07:—2) = 0n+1 - %(4‘9n+2 - ‘9n+3) = —k(ﬁ:— ‘93+1)a (ﬁ = 3 j(‘m S k= 3 m E;) .

The input quantities to this portion of the machine set-up are %(40,,.,—0,,s) and B(46,_,—0,,);
the output quantities from it are 6,,, and £0,.

17. RESULTS, COMPARISON WITH EXPERIMENT, AND DISCUSSION

Experimental results were available for ingots of side 2¢ = 9, 11 and 12 in. In all cases
the temperature of the steel remains above the transformation temperature and that of the
mould below it over nearly the whole time covered by the observations. This was convenient
for exploratory work on the heat flow equations with radiative transfer, as the major tem-
perature variation of thermal properties, which occurs in the transformation range, is not
involved. Accurate values of the thermal properties for the cast iron of the mould were not -
available over the whole range concerned, and it seemed adequate at this stage to take a
constant value D, for the diffusivity for it. Also for the steel no accurate values of thermal
properties were available in the higher part of the temperature range, and consequently a
constant value D, was taken for its diffusivity. The value of the coefficient 7/(2—7) in the
radiative transfer equation (15-4) was taken as 0-9, the corresponding value of the mean
emissivity 7 is 0-95 very nearly.

In the solution of the heat flow equations, the thickness of the mould wall was covered in
two intervals, and for the first trial solutions the ingot was taken in one interval from centre
to surface; this is equivalent to assuming a parabolic temperature distribution through it.
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Later, a three-interval approximation was taken for the heat flow in the ingot, though the
temperature gradient at the ingot surface was obtained from the one-interval formula (17-1)
below. The ingot temperatures were then §, (centre), 0,, ,, 85 (surface), and the mould
temperatures 0, (inner surface), 0, and 0 = 0, (outer surface).

1600
1400 ‘
. observed }
o centre of ingot
‘\;\palculated
1200 \
1000 outer surface
of ingot /
v (calculated) .
8, inter surface AN
g 800 of mould
8 calculated
600
) outer surface
400 of mould
observed
200}
0 20 40 . 60 80

time in minutes
Ficure 6. Time variation of temperature distribution in 11 in. diameter steel ingot
and mould after casting.

The observed temperatures were 6, 8,, 05, 0, of which 6,, as already mentioned, was
regarded as not reliable. The record of the observed temperatures started from the pouring
of the molten steel into the mould. Ifthe latent heat of fusion of steel were known, it would be
possible to use the methods of § 10 to start from this stage, or rather from a slightly later stage
at which it can be safely assumed that the gap between ingot and mould wall has been
formed; this is certainly well before the ingot is solid throughout. But the available values
for the latent heat were so diverse that it seemed best to start from a time when all the steel
was solidified ; this is fairly well marked by the end of the horizontal portion of the curve of
central temperature; for the 11 in. ingot (see figure 6), this occurred at about 15 min. from
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the pouring. In this time, the mould had heated up considerably, and it was necessary some-
how to obtain a temperature distribution through the mould as well as through the ingot in
order to provide initial conditions for the solution of the heat flow equations. This was done
as follows. .

For the initial distribution through the ingot, a parabolic distribution was assumed. Then
the surface temperature gradient (30/dr), at the surface of the ingot is 2(65—0,)/a. For the
mould, (00/dx), = — (36,—405+0,)/! if the approximation (4-3) is used, so the equations of
radiative transfer (15-4) become

(2K,/a) (65— 05) = (Knfl) (30,—405+0,) = [1/(2—1)] a(64—03). (17-1)

\H__.observed} centre of ingot

1300 \_ calculated
1100 ¢
I
& 900F
5 inner surface
of mould
’ (caleulated)
700 f

——
~
-
-
Sm——e
~a.
~—
~———
-

outer surface

of mould
300 (obseryed)

300

10 50 90 "~ 130
time in minutes )

Ficure 7. Time variation of temperature distribution in g in. diameter steel ingot
and mould after casting.

If 0,, 05, 0, are taken from the experimental records, #; and 8, can be obtained by solution of
these equations, and then from 0,, ; and the assumed parabolic distribution through the
ingot, , and @, are obtained. It would be expected that the effects of the initial temperature
distribution would become negligible after a time whose measure on the 7-scale is a few
units, and 42/D, the unit of time on the 7-scale, is about 4 min. for the 11 in. ingot. This is
small compared with the whole period of cooling, so even if the initial temperature distribu-
tion thus determined is rather rough, it should not greatly affect the solution after about
10 min.

Figure 6 gives the results for the 11 in. ingot. It shows the observed outer temperature of
the mould, the results of integrating the heat flow equations using this time variation of
surface temperature and the observed central temperature. Figure 7 gives similar results
for the 9 in. ingot.
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It must be remembered that the observed central temperature is not used in these solutions
of the heat flow equations, except for the single value required to provide the initial condi-
tions for the solution, so that the comparison of observed and calculated temperatures is a
real comparison of independently determined quantities. The agreements are quite re-
markably good ; in fact, considering the approximations made (constant diffusivity for both
ingot and mould, for example), one might be inclined to say that it is almost too good.

The results certainly show that it is feasible to evaluate the internal temperature distribu-
tion in an ingot cooling in a mould from knowledge of the temperature on the outside surface
of the mould only. If the accuracy of the available thermal data, for the steel at high tem-
peratures and for the cast iron of the mould, justified the increase in elaboration of the
machine set-up, it would be possible to include the variation of thermal properties both of
the steel and of the cast iron with temperature in this work.

The excellencé of the general agreement between the calculated and observed central
temperatures suggests that differences, where they occur, may be significant. The main
difference occurs near the beginning of the calculated solution, which drops sharply away
from the melting point, whereas the observed curve has a continuous slope and falls away
more gently. This difference may arise from the initial temperature distribution through the
ingot differing substantially from the parabolic distribution assumed in the calculations.
But it may also arise from solidification taking place not at a definite temperature but over
the range between liquidus and solidus in the equilibrium diagram, which for this steel
(no. 12 of Table 40 of the Second Report of the Alloy Steels Research Commitiee) is about 20° C;
part of the latent heat of fusion would be evolved over this range, and would delay the
initial fall of central temperature. To include this in the calculated solution, it would be
necessary to know not only the latent heat of fusion, but its contribution to the effective
specific heat over this temperature range.

The agreement between observed and calculated temperatures was not nearly so good for
the temperatures 0,, 0, at the inner surface of the mould and half way through its wall as
for @, the central temperature of the ingot. As already mentioned, at the time the calcula-
tions were made, the observed temperature #, at the inner surface of the mould was regarded
as not certainly reliable, and no use of it was made in the calculation. On the other hand, the
observed values of 5, one of which was used to start the calculation, were not originally
suspect. However, since the calculations were carried out, a repeat experiment has been
made which seems to confirm the original values of ¢, and to throw doubt on those of 0, ;
further, for the 11 in. ingot the observed curves of ; and #, against time cross over in the
course of the cooling, and it seems most unlikely that this is real, as it would imply an inward
flow of heat in the outer part of the mould. This suggests that it might have been better to
start from a temperature distribution derived from solution of (17-1) with the observed
values of 0y, 04 and 0, rather than of 0,, ; and 0, but such a change of initial condltlons
would probably not affect the solution much after the first 10 min. or so.

Figures 8 and 9 show results, for the central temperature only, obtained from solutions for
the 11 in. ingot calculated with different conditions, or with different approximations, to see
their effect.

The total range of f; is so small (about 100° C) in comparison with that of §, that it seemed
worth while examining just how sensitive 0, is to variations in §,, and whether adequate
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accuracy for practical purposes could be attained by taking some constant value. Accor-
dingly, three solutions were taken for #; constant at 100, 400 and 500°. The results are shown
in figure 8. The central temperature 6, in each of them differs appreciably from that obtained
using the observed 6,; the result for ; = 500° forms the best approximation, as would be
expected since this is nearest to the mean temperature over the period concerned.

1400 |
1200
i calculated centre temperature of ingot
1000
S
g,
g
8 -
800
600F
et surface of mould (65)
. bse{qed ) \
3 .
400 A A - Iy - - =y | . - A - 2 v- -

20 40 60 80

time in minutes

Ficure 8. Cooling of 11 in. ingot in mould. Effect of temperature of outer surface of mould (6;).
Central temperature of ingot calculated for 6 constant at 100, 400 and 500° C.

Figure 9 shows the final result compared with two earlier results; in both of these the heat
flow equation in the ingot was taken in one interval instead of in three intervals, and in one
17/(2—7n) was also taken as unity instead of 0-9.

The success of this work made it seem worth while trying to deal with the solidification
process, despite the uncertainty in the latent heat of fusion. For this purpose, only the 11 in.
ingot was considered, and a three-interval solution of equation (10-3) was used, with a latent

Vor. 240. A, 7
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heat of fusion of 49 cal./g., it being assumed that all the latent heat was evolved at each point

-before the temperature began to fall. This gave a time of solidification of 20 min. for the 11 in.
ingot, which is somewhat larger than the observed time, but is of the right order of magnitude.
Further work on this subject awaits the provision of reliable values for the latent heat of steel
and the thermal properties at temperatures up to the melting-point.

1400

1300

1200

1100

1000

temp. °C

900p

800F

700

600p

\served outer surface of moulq
0o

500p

A RN ¥ N W 'y A 'y -l

20 30 40 50 60 70 80

time in minutes

Ficure 9. Cooling of 11 in. ingot in mould. Effect of method of calculation and of assumed emissivity
on calculated central temperature of ingot. Curve (1), one interval in radius of ingot, /(2 —#) = 0-9.
Curve (2), one interval in radius of ingot, /(2 —#) =1-0. Curve (3), three intervals in radius of
ingot, 7/(2 —7) =0-9.

CONCLUSIONS

The examples given in §§ 14 and 17 give some indication of the power of the method here
considered for evaluating solutions of the equation of heat conduction. There is no restriction
to constant thermal properties, empirical curves for the time variation of surface temperature
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can be used, or other, possibly non-linear, types of boundary conditions can be introduced,
and the treatment can be extended to include a radiative transfer across a gap in the interior
of the solid in which heat conduction is taking place; conduction across the surface of separa-
tion of two materials, of different thermal properties, in contact could be handled by a
method similar to that used for the treatment of radiative heat transfer. In none of the
examples here considered has there been any internal generation of heat, but only a minor
extension of the method is needed to include this.
It will be clear, too, that the method is not restricted to the equation of heat conduction.
- As already explained in § 1, the characteristic feature of the kind of problem to which it can
be applied is that the domain over which the solution is required is open in one independent
variable (which in practice will often be the time variable, as here, but is not necessarily so) ;
the integration is carried out in this variable, finite differences being used in the other
variables. For mechanical integration, equations which are of higher order than the first,
in the variable in which integration is being carried out, make so much demand on machine
capacity that their treatment needs larger machines than are at present available in this
country; and even equations which are first order in this variable, but are not otherwise very
simple in structure, require more capacity than is at present available. So the only equations
to which the method has been applied are of rather simple form, and first order in time.
Even in this restricted field there seems to be considerable scope for the application of the
method, which will be greatly extended if substantially greater machine capacity ever
becomes available.
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APPENDIX

ANALYTICAL SOLUTIONS OF THE EQUATIONS OF ONE-DIMENSIONAL
HEAT FLOW FOR CONSTANT DIFFUSIVITY
As explained in the text (§ 7), analytical solutions both of the exact equation (1-1) of one-
dimensional heat flow, and of the set of approximate equations (3-4), (3-5), were required
for D constant, to provide tests, firstly of the accuracy of the approximation introduced by the
replacement of the exact differential equation by this set of approximate equations, and
secondly of the accuracy of the solution of this set of equations obtained by the differential

analyser.
7-2
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It is most convenient for this purpose to take the equations in their dimensionless forms,
namely,

a0 9%
Zar ¢ (5:3)
for the partial differential equation, and
a0,
, 3—7{= 0;01—20,40;_, ' (56)

for the set of ordinary differential equations.

The technique of Heaviside operators provides the most convenient analytical tool for
the solution of these equations with given surface conditions.

Consider first the partial differential equation (5-3). If p is written for d/dr, it becomes

d%0

The solution symmetrical about X = 0, and equal to the surface temperature ,(7) at X = 1,

is formally
_ coshptX

(1) ="coshpi 0s(7) (A2)

and in particular the central temperature is given by
0y(7) = (sech 1) 0,(7). (A3)

As is usual with operational expressions of this type, this formal solution can be expanded in
two ways, in partial fractions or in negative exponentials,* and interpretation of these series
then gives two alternative expansions of #(7) as a function of 7, one suitable for evaluation
for large 7 and the other for small 7.

Expansion in partial fractions

Consider first the expansion in partial fractions of the operator (coshp*X/coshp?), operating
on the surface temperature in (A 2).

The general expansion of f(p)/F(p) in partial fractions is

) SO0 5 Sla) _p (Ad)

F(p) ~ F(0) e (o) p—t,
where the a,’s are the roots of F(a) = 0.
Here f(a) =coshalX, F(a) =coshal, «F'(¢)= atsinha?,
and the roots a; of () = 0 are given by
af = (2k+1)idm, or o =—[(2k+1)in7]? (A5)

for integer values of £ (including zero; only zero and positive values are relevant as negative
values of £ do not give distinct roots ;). Hence

0 F' (3) = (—1)F1 (2k+1)

* See, for example, Jeffreys (1927), chapter 5.
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and (A 4) gives

coshptX = 42 _l)kcos(2k—|-l)%—7rX : p

coshpt =72 2k+1  p+[(2k+1) In]* (A6)

When the operator on the right-hand side of (A 6) is applied to the surface temperature
g,, it gives a series of terms like

V4
priErn g (A7)

multiplied by numerical coefficients. Now

Py (1B Ny
b = (1)
1 T
and .._,_¢(7-) — e—-ﬁq- BT’ ¢(71) dr"
p+p fo As)
i —

0

and the use of this enables the various functions (A7) to be expressed in terms of integrals
like
T
f U+ DITR (=) ) (17 7’
0 .
which can then be evaluated numerically or perhaps analytically.

This procedure is necessary when the surface temperature 6, is an empirical function of
time specified only by a graph or table. But when it is given by an algebraic formula, as in
the work considered in § 7, it is often easier to replace 6, in (A 7) by its operational representa-
tion, and then to interpret the whole resulting operational expression.

For example, for a surface temperature given by Heaviside’s unit function

CO(1)=H(1)=0 (7<0),

, =1 (7>0),
(case I of §7), (A7) is just
p — o~ [k+D)inm27
prIEEFD e ) = ’
so (A 2), (A6) give, for this case,
143 £COS (2K +1) 31X _op i1y ims
o(r) =12 5 (~ 12 CEEIIE e, (A9)
and in particular the central temperature is
42 1 \
O,(7) =1 __;kgo(_l)kme—t(zmmn] 7 (A 10)

The surface temperature taken in case IT of § 7, namely,
O(r) =0 (7<0),
=pf1r (1>0),
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has the operational representation*  0,(7) = f/p,

so (A7) becomes just
1 — 1 : [1 _e—{(2k+l)§7r}27]
p+[Ek+1) 5m])2  [(2k41) 371]? ’

16 2 cos (2k+1) tnX B S
so that 0(7) zﬁ[r——;gkgo(—l)k ((2/€—|-1))32 {1 —¢ 1@k Dim }] (A11)

And the surface temperature taken in case III of § 7, namely
0,(1)=0 (1<0)
= $[60—e"75(724+1074-50)] (7>0)
has the operational representation |

50 1
"=

So L_gn=50 2+ _1

p—ay 3 p—ay (5p+1)°
L N S SO R S - ———
3 L(5ay+1)*p—a  (Boy+1)\(5p+1)% " (Sap+1) (5p+1)% " (5 +1)% (5p+1)
_If 50 . 107 50
=§[(5ak+1)3" —(5ak+_1_){72+5ak+1—} (5ock—i—l)2}:|’ (A12)

and 0(7) is made up of a series of functions of 7 of this kind, with the different values of «,
given by (A 5), with coefficients functions of X as in (A 6).

Expansion in negative exponentials

For small values of 7, the Fourier series form for the solution of the heat flow equations
which is given by the expansion of (cosh p?X/cosh p?) in partial fractions is only slowly con-
vergent, and so is inconvenient for numerical evaluation. Then it is convenient to use an
alternative expansion of the operational form of the solution, in negative exponentials.

For this purpose the operator (cosh pX/cosh p?) is written (with ¢ = p* for convenience)

coshp!X  etX 4o eX
coshpt =~ el4e¢ )
— 90X a3X) G0 | [ a0 a0 a0 ] (A13)

— e—q(l~X) [1 +e—2qX] [1 +e—2q]—1

and in particular, for X = 0 sechp! = 2[e-7—¢7 3¢ ¢757 . ]. (A14)
Now it can be shown that

e, (7) = 5y | O(7) S (1) )

so that for any time variation of surface temperature ¢, the results of the operation of each
term of (A 13) or (A 14) on §, can be evaluated. But, as with the expansion in partial fractions,

* As usual, an operator written without an operand expressly indicated is to be understood as operating
on the unit function H(r). The symbol = is used to indicate the relation between a function and its opera-
tional representation; that is to say f(p) =@ (7) means f(p) H(1) = (7).
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if 0, is given by an analytical formula it is often simpler to replace this formula by its opera-
tional representation, multiply by the operator on the right-hand side of (A 13) or (A 14),
and interpret the result term by term.

For example, for case I of §7 0,(7) = H(1),
so (A 3), (A13) give just 0y(7) = 2[e 7—e 30 4-¢7 51+ ...] H(7). (A15)

Now if erfc z is written for the error function complement

2 [ee]
erfcz = :/—7-J e~ dw,

then % = ¢~ H(1) = erfc (§/27%),
so (A 15) becomes 0,(7) = 2[erfc (1/27%) —erfc (3/27%) +erfc (5/27%) — ...]. (A16)

Now erfc z tends to zero rapidly as z increases beyond about z = 2, so this series converges
rapidly for small 7, which is just the region where the Fourier series form (A 9) converges
slowly. |

Similarly, case II of §17, O,(r) =pp,
so (A3), (A13) give ,(7)=2f[ple1—p~le3a4pleSa— . ]. (A17)
Now ple % = 4riierfc (£/27%)

where ii erfc z is the second integral of erfc z, and has been evaluated and tabulated (Hartree
1936) for use in just this context. Hence (A 17) gives, for case II of § 7,

0o(7) = 8f7[iierfc (1/27}) —iierfc (3/27%) +-iierfc (5/27%) — ...]. (A18)

Values of 0(7) for small values of 7in table 1 have been calculated from (A 16) and (A 18).

The finite difference approximation

Consider now the set of ordinary differential equations (5-6), and let p now stand for d/d T
instead of for /d7. Then this set of equations becomes

‘9j+1“ (2+p) ‘9j+‘9j—1 = 0.

The solution of this recurrence relation which is symmetrical about j = 0, and has § = 6,
atj = n, is formally

zi 4z
0,(T) = E;qu-:;,ﬁs(T), (A19)
where z is such that 22— (2+p)z+1=0. (A 20)

At first sight it might be expected that solution of (A 20) for the substitution of the result in
(A 19) would give an operator involving p*. But it should be noted that despite appearances,
the operator in (A 19) is simply the ratio of two polynomials in .

On substitution of z = ¢7, (A 19) becomes

__coshjy
~ coshny

0;(T)

and (A 20) gives p = 2(coshy—1) = 4sinh?}y. (A22)

0,(T), (A21)
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From (A22) y = cosh™!(1—4%p) and substitution in (A 21) would express the operator
formally as a function of p; but it is more convenient to work in terms of y.

To deal with this situation an extension of (A 4) is needed. What is required is an expan-
sion in partial fractions, in terms of p, of expressions like g(y)/G(y), where p = d(y). Ify, is
such that ¢(y,) = 0, and y, are the roots of G(y) = 0 (only those roots which give distinct
values of ¢(y) being included), the appropriate expansion is

gy) _ &) ¢ (vi) 8ve) P
Glr) = Glro) T Bln) G ) p—9(r)” (A 2)

For (A21) and (A 22),
g(y) = coshjy, G(y) = coshny, ¢(y) = 2(coshy—1).
Thus y, = 0, the roots of G(y) = 0 are
Ve = (2k+1)im/2n [0<k<(n—1)] (A 24)
(values of £ greater than (z—1) do not give distinct values of ¢(y)) and

$(7x) = —4sin?[(2k+-1) n/4n],
@' (y) = 2isin [(2k+1) m/4n], (A 25)
G(yx) = (—1)%in.

Hence from (A 23), the operator in (A 21) is

n—1 [(2/6—[—1) . /272] p
1-— ,EO(— l)kncf:n [(2k+ 1?7;/4n]p+4sin2 [(2k1 1) njdn]" (A 26)

As for the operational solution of the partial differential equations, the result of operating
on the surface temperature with the terms in the sum in (A 26) can be expressed in terms of
integrals by means of (A 8) ; but if the surface temperature is given by an analytical formula,
it is often best to replace this by its operational representation and then interpret the
resulting expression. For example, for

0(T)=0 (T<0)
=pT, (T>0)
has the operational representation  6,(7) = f,p7,
so (A 21) and (A 26) give

_ o A . cos{(2k+1) jm/2n} 1
o(T) zﬁ‘[p _,Zo("l) ntan{(2k+lj)71/4n}[)+4sin2{(2k—1—1)ﬂ/4n}]

_ 1Sl K cos {(2k+1) jm/2n} —4T'sin? [(2k+1) /4n]
zﬂl[T—_—Z (=1) tan{(2/c+l)ﬂ/4n}sin2{(2/c—|—l)71/4n}(1_e e )]
(A27)
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